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Juan Bosco Garćıa Gutiérrez
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Control system

Control system

In a control system can be several types of variables:

time variable

state variables

control variables

measurable variables

noise/uncertain variables
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Objective in control theory

Objective

Design a control signal which achieves some “property” or feature desired for the
state variable for every noise/uncertain signal.

To control the state variable
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Objective in control theory

Properties for control problems

It can be studied different properties:

Stability

Stabilization

Controlability/reachability

Optimization
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Types of control systems

Classification of control systems

Discrete systems: variables are discrete

Continuous systems: variables are continuous

Hybrid systems: variables are discrete and continuous
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Types of control systems

Type of dynamical system

ODE (ordinary differential equation)

PDE (partial differential equation)

Difference equation

A mixture: for instance, a coupled ODE-PDE system
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Types of controls

Classification of control

Open loop control: control depends on time

Closed loop control (feedback): control depends on state. (Robust).
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Outline of this section
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Definition of switched system
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Definition of switched system

Switched system

A switched system is given by a family of systems

ẋ = fσ(x),

where fj : Rn → Rn is a vector field with index j ∈ J which is called subsystem,
the variable x is the state variable and the number n is the order of the system.

σ : R+ → J is a switching law.

ẋ(t) = fσ(t)(x(t)).

σ : Rn → J is a feedback switching law.

ẋ(t) = fσ(x(t))(x(t)).
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Definition of switched system

Switched linear system

A switched linear system is given by a family of linear systems

ẋ = Aσ(x),

where A1, . . . ,AM ∈Mn are matrices.
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Solution of a switched system

{
ẋ(t) = fσ(t)(x(t)), t ≥ 0,

x(0) = x0,

Denote the solution ϕ(t; x0, σ).

σ(t) = i0, for t0 = 0 ≤ t < t1.{
ẋ(t) = fi0(x(t)), t0 ≤ t ≤ t1

x(0) = x0.

x1 = ϕ(t1; x0, σ).

σ(t) = i1, for t1 ≤ t < t2.{
ẋ(t) = fi1(x(t)), t1 ≤ t ≤ t2

x(t1) = x1.

x0
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ẋ(t) = fi0(x(t)), t0 ≤ t ≤ t1

x(0) = x0.

x1 = ϕ(t1; x0, σ).

σ(t) = i1, for t1 ≤ t < t2.{
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Solution of a switched system

ẋ = A1x =

(
−2 1
−2 3

)
x , ẋ = A2x =

(
−1/2 −1

10 −2

)
x .

Initial condition x0 = (1, 0).

σ(t) =



1, if t ∈ [0, 0.3),
2, if t ∈ [0.3, 0.4),
1, if t ∈ [0.4, 0.6),
2, if t ∈ [0.6, 1.1),
1, if t ∈ [1.1, 1.3),
...

x0

A1

x1
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Stabilizability of switched systems

Exponentially stable

A dynamical system given by a differential equation

ẋ(t) = f (x),

x(0) = x0,

is exponentially stable if there exist C > 0 and α > 0 such that

‖ϕ(t; x0)‖ ≤ Ce−αt‖x0‖

for every t ≥ 0 and x0 ∈ Rn.
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Stabilizability of switched systems

The problem of stabilizability

For a switched system
ẋ = fσ(x),

the problem is to design a switching law σ such that the dynamical system

ẋ(t) = fσ(t)(x),

x(0) = x0,

is exponentially stable.
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Outline of this section

3 Stabilization for a class of third order switched linear systems
The class of third order switched linear systems
Previous results
The new class of third order switched linear systems
Main result
Parametrization of the class of switched linear systems
Numerical example
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The class of third order switched linear systems

Switched system
S = {A1,A2,A3}

where A1,A2,A3 ∈M3 and

1 For k = 1, 2, 3, the eigenvalues of Ak are λk , ak ± bk i , where λk , ak , bk ∈ R
and bk > 0.

2 If v1, v2, v3 ∈ R3 are eigenvectors of matrices A1,A2,A3 associated to the real
eigenvalues λ1, λ2, λ3, respectively, then v1, v2, v3 are linearly independent.
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Previous results

Lemma

Let S = {A1, . . . ,AM} be a switched linear system and P ∈Mn be a non-singular
matrix. The following statements are equivalent.

1 The switched system S is (asymptotically, exponentially) stabilizable.

2 The switched system S ′ = {PA1P
−1, . . . ,PAMP−1} is (asymptotically,

exponentially) stabilizable.
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Previous results
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Previous results

S̃ = {Ã1, Ã2, Ã3}

Ã1 = PA1P
−1, Ã2 = PA2P

−1, Ã3 = PA3P
−1

Ã1 =

λ1 ã112 ã113
0 ã122 ã123
0 ã132 ã133

 , Ã2 =

ã211 0 ã213
ã221 λ2 ã223
ã231 0 ã233

 , Ã3 =

ã311 ã312 0
ã321 ã322 0
ã331 ã332 λ3


Lemma

ã123ã
1
32 < 0, ã213ã

2
31 < 0, ã312ã

3
21 < 0.
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ã221 λ2 ã223
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0 ã132 ã133
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−1, Ã2 = PA2P
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ã331 ã332 λ3


Lemma
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Ã1 =
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Case ã123ã
2
31ã
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Q =
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−1.

Q =

s1 0 0
0 s2 0
0 0 s3


s1, s2, s3 ∈ {−1,+1}

Bosco G.2 Stabilization of switched systems October 16th, 2021 22 / 48



Previous results

Case ã123ã
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1
23, ˜̃a231 = s1s3ã
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−1, ˜̃A2 = QÃ2Q
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3
12 < 0

˜̃S = { ˜̃A1,
˜̃A1,

˜̃A1}
˜̃A1 = QÃ3Q
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−1, ˜̃A3 = QÃ1Q
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2
13, ˜̃a312 = s2s3ã
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3
21, ˜̃a231 = s1s3ã
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1
32.
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Previous results

˜̃S = { ˜̃A1,
˜̃A1,

˜̃A1}

1 Each matrix ˜̃A1,
˜̃A2,

˜̃A3 has two non real eigenvalues.

2 e1, e2, e3 are eigenvectors of ˜̃A1,
˜̃A2,

˜̃A3 associated to the real eigenvalue,
respectively.

3 The entries ˜̃a123, ˜̃a
2
31, ˜̃a

3
12 are positive.
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The new class of third order switched linear systems

S = {A1,A2,A3}

A1 =

λ1 a112 a113
0 a122 a123
0 a132 a133

 ,A2 =

a211 0 a213
a221 λ2 a223
a231 0 a233

 ,A3 =

a311 a312 0
a321 a322 0
a331 a332 λ3



1 the matrix Ak has eigenvalues λk , ak + bk i , ak − bk i with λk , ak , bk ∈ R and
bk > 0, for k = 1, 2, 3,

2 a123 > 0, a231 > 0 and a312 > 0.
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Main result

F1 = {(x1, x2, x3) ∈ R3 : x2 = 0},

F2 = {(x1, x2, x3) ∈ R3 : x3 = 0},
F3 = {(x1, x2, x3) ∈ R3 : x1 = 0}.

Lemma

For an initial condition x0 ∈ R3 \ {0}.
1 There exists τ1 ≥ 0 such that eA1τ1x0 ∈ F2.

2 There exists τ2 ≥ 0 such that eA2τ2x0 ∈ F3.

3 There exists τ3 ≥ 0 such that eA3τ3x0 ∈ F1.
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2 There exists τ2 ≥ 0 such that eA2τ2x0 ∈ F3.

3 There exists τ3 ≥ 0 such that eA3τ3x0 ∈ F1.

Proof

ẋ(t) = A1x , t ≥ 0,

x(0) = x0.

ẋ2 = a122x2 + a123x3,

ẋ3 = a132x2 + a133x3.

There exists τ1 ≥ 0 such that x3(τ1) = 0. Then x(τ1) ∈ F2.
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Main result

Define

T1 = min{τ1 ≥ 0 : eA1τ1e3 ∈ F2},

T2 = min{τ2 ≥ 0 : eA2τ2e1 ∈ F3},
T3 = min{τ3 ≥ 0 : eA3τ3e2 ∈ F1}.

Proposition

It turns out that

1 eA1T1x0 ∈ F2 for all x0 ∈ F1,

2 eA2T2x0 ∈ F3 for all x0 ∈ F2,

3 eA3T3x0 ∈ F1 for all x0 ∈ F3.

Proof

For a given x0 ∈ F1 it follows that x0 = x1e1 + x3e3 for x1, x3 ∈ R. Then

eA1T1x0 = x1e
A1T1e1 + x3e

A1T1e3 = x1e
λ1T1e1 + x3e

A1T1e3,

since e1 ∈ F2 and eA1T1e3 ∈ F2 then eA1T1x0 ∈ F2.
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Main result

For x0 ∈ R3 \ {0} and t ≥ 0

σ(t) =


3 if t ∈ [0, τ3),
1 if t ∈ [τ3 + kT , τ3 + kT + T1),
2 if t ∈ [τ3 + kT + T1, τ3 + kT + T1 + T2),
3 if t ∈ [τ3 + kT + T1 + T2, τ3 + kT + T1 + T2 + T3),

where k ∈ N, T = T1 + T2 + T3, and τ3 ≥ 0 verifies eA3τ3x0 ∈ F1.

ẋ(t) = Aσ(t)x(t), t ≥ 0

x(0) = x0

ϕ(τ3 + kT ; x0, σ) ∈ F1 for all k ∈ N.

Bosco G.2 Stabilization of switched systems October 16th, 2021 31 / 48



Main result

For x0 ∈ R3 \ {0} and t ≥ 0

σ(t) =


3 if t ∈ [0, τ3),
1 if t ∈ [τ3 + kT , τ3 + kT + T1),
2 if t ∈ [τ3 + kT + T1, τ3 + kT + T1 + T2),
3 if t ∈ [τ3 + kT + T1 + T2, τ3 + kT + T1 + T2 + T3),

where k ∈ N, T = T1 + T2 + T3, and τ3 ≥ 0 verifies eA3τ3x0 ∈ F1.
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Main result

E = eA3T3eA2T2eA1T1

Ex ∈ F1 for all x ∈ F1.

E =

e11 e12 e13
0 e22 0
e31 e32 e33


M =

(
e11 e13
e31 e33

)
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Main result

Theorem

If ρ(M) < 1 then the switched linear system S is exponentially stable with
switching law σ.

Proof

Since ρ(M) < 1 then the discrete-time linear system with matrix M is
exponentially stable, i.e. there exist c > 0 and β ∈ [0, 1) such that

‖Mky‖ ≤ cβk‖y‖ for y ∈ R2 and k ∈ N
‖E kx‖ ≤ cβk‖x‖ for x ∈ F1 and k ∈ N

α = − log(β)

T
> 0

m1 = sup{‖eA3τx‖ : 0 ≤ τ ≤ T3, ‖x‖ = 1}
m2 = sup{‖eA3t3eA2t2eA1t1x‖ : 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2, 0 ≤ t3 ≤ T3, ‖x‖ = 1}
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Main result

Proof (Cont.)

Let x0 ∈ R3 \ {0} be an initial condition.

ϕ(t; x0, σ) =


eA3τx0, for t = τ, and 0 ≤ τ ≤ τ3,
eA1τxk+1 for t = τ3 + kT + τ and 0 ≤ τ ≤ T1,
eA2τeA1T1xk+1, for t = τ3 + kT + T1 + τ and 0 ≤ τ ≤ T2,

eA3τeA2T2eA1T1xk+1,
for t = τ3 + kT + T1 + T2 + τ
and 0 ≤ τ ≤ T3,

where xk+1 = E keA3τ3x0, k ∈ N and t ≥ 0.
If t = τ3 + kT + τ with 0 ≤ τ ≤ T1, then

‖ϕ(t; x0, σ)‖ = ‖eA1τxk+1‖ ≤ m2‖E keA3τ3x0‖
≤ m2cβ

k‖eA3τ3x0‖ ≤ m1m2cβ
k‖x0‖

≤ m1m2ce
α(τ3+τ)e−αt‖x0‖ ≤ m1m2ce

α(T3+T )e−αt‖x0‖.

‖ϕ(t; x0, σ)‖ ≤ Ce−αt‖x0‖ for all t ≥ 0.
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Main result

Proposition

A polynomial p(z) = z2 + a1z + a0 is Schur stable (all the root are in the unit
disk) if, and only if

|a0| < 1 and |a1| < a0 + 1.

Theorem

The switched linear system S is exponentially stable with switching law σ if the
matrix M verifies the following conditions

1 | det(M)| < 1, and

2 | tr(M)| < det(M) + 1.
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Parametrization of the class of switched linear
systems

Let A ∈M3 be a matrix verifying the following conditions

1 A has eigenvalues λ, a + bi , a − bi with λ, a, b ∈ R and b > 0,

2 the matrix A is λ a12 a13
0 a22 a23
0 a32 a33


with a23 > 0.

A = PJP−1

J =

λ 0 0
0 a b
0 −b a

 and P =

1 p q
0 γ 0
0 −d b

 ,

where b, λ > 0
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Parametrization of the class of switched linear
systems

Relation between matrix A and parameters

a =
a22 + a33

2
,

d =
a22 − a33

2
,

b =
√
−d2 − a23a32,

γ = a23,

(a − λ)p − bq = a23a12 − da13,

bp + (a − λ)q = ba13.
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Parametrization of the class of switched linear
systems

Exponential matrix eAT

eAT = PeJTP−1 =

e11 e12 e13
0 e22 e23
0 e32 0

 .

Time T > 0 such that eATe3 ∈ F2

e′3e
ATe3 = eaT cos(bT)− d

b
eaT sin(bT) = 0,

Therefore

T =
1

b
arccot

(
d

b

)
,

sin(bT) =
b√

b2 + d2
, and cos(bT) =

d√
b2 + d2

.
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Parametrization of the class of switched linear
systems

Exponential matrix eAT

eAT = PeJTP−1 =

e11 e12 e13
0 e22 e23
0 e32 0

 .

e11 = eλT ,

e32 = −
√
b2 + d2

γ
eaT ,

e13 =
pb + qd

b
√
b2 + d2

eaT − q

b
eλT ,

e23 =
γ√

b2 + d2
eaT .
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Parametrization of the class of switched linear
systems

Matrices A1,A2 and A3

A1 = Q1AQ
−1
1 , A2 = Q2AQ

−1
2 , A3 = Q3AQ

−1
3 ,

where

Q1 =

1 0 0
0 1 0
0 0 1

 , Q2 =

0 0 1
1 0 0
0 1 0

 , Q3 =

0 1 0
0 0 1
1 0 0

 .
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Parametrization of the class of switched linear
systems

Matrix E = eA3T3eA2T2eA1T1 = E3E2E1

Tk =
1

bk
arccot

(
dk
bk

)

E1 =

e111 e112 e113
0 e122 e123
0 e132 0

 , E2 =

 0 0 e213
e221 e222 e223
e231 0 e233

 , E3 =

e311 e312 0
e321 0 0
e331 e332 e333

 .
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Parametrization of the class of switched linear
systems

det(M)

det(M) =
det(E )

e22
,

det(E ) = etr(A1)T1+tr(A2)T2+tr(A3)T3 = e(λ1+2a1)T1+(λ2+2a2)T2+(λ3+2a3)T3

det(M) = − γ1γ2γ3√
b21 + d2

1

√
b22 + d2

2

√
b23 + d2

3

e(λ1+a1)T1+(λ2+a2)T2+(λ3+a3)T3 < 0

−1 < det(M)

γ1γ2γ3e
(λ1+a1)T1+(λ2+a2)T2+(λ3+a3)T3 <

√
b21 + d2

1

√
b22 + d2

2

√
b23 + d2

3 .
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Parametrization of the class of switched linear
systems

tr(M)

| tr(M)| < 1 + det(M),

tr(M) = e332e
2
21e

1
13 + e333e

2
31e

1
13 + e312e

2
21e

1
11 + e332e

2
22e

1
23,

e111 = eλ1T1 , e123 =
γ1√

b21 + d2
1

ea1T1 , e113 =
p1b1 + q1d1

b1
√
b21 + d2

1

ea1T1 − q1
b1

eλ1T1 ,

e222 = eλ2T2 , e231 =
γ2√

b22 + d2
2

ea2T2 , e221 =
p2b2 + q2d2

b2
√
b22 + d2

2

ea2T2 − q2
b2

eλ2T2 ,

e333 = eλ3T3 , e312 =
γ3√

b23 + d2
3

ea3T3 , e332 =
p3b3 + q3d3

b3
√
b23 + d2

3

ea3T3 − q3
b3

eλ3T3 .
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Numerical example

Consider a third order switched system with matrices

A1 =

 1 0 0
0 1 2.5
0 −20 1

 ,A2 =

 1 0 −12
0 1 0
.5 0 1

 ,A3 =

 1 1 0
−12 1 0

0 0 1

 .

Eigenvalues of A1: 1, 1± 5
√

2i .

Eigenvalues of A2: 1, 1±
√

6i .

Eigenvalues of A3: 1, 1± 2
√

3i .

T1 ≈ 0.222144, T2 ≈ 0.641275 and T3 ≈ 0.45345.

det(M) = −0.293792.

tr(M) = 0.
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Outline of this section

4 Conclusions
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Conclusions

Explicit condition from the data problem.

Another switching law can be defined by reversing the order of the
subsystems. Then, there are two possibilities to check it out.

In fact, there are not only two switching laws in this method but an infinity
number of them can be defined by “switching” the previous two ones. . .
(studying the underlying discrete-time switched linear system)

An invariant subspace has been provided for this class of switched systems.
So we can think about a generalization of further order.
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