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RIUZUVIRYLG I DEFINITION OF SUPPORTING VECTOR

SUPPORTING VECTORS

Supporting vectors appear implicitly in the literature of Operator
Theory and Banach Space Geometry through famous theorems such
as Hahn-Banach, James, Lindenstrauss, Bishop-Phelps-Bollobds, etc.

DEFINITION (SUPPORTING VECTOR)

Let T : X — Y be a continuous linear operator between normed
spaces X, Y. The set of supporting vectors of T is defined as

suppv(T) := {x € Sx : [Tl = [IT]]}.

DEFINITION (EXPOSED FACES)
If x* € X* # 0, then suppv, (x*) := {x € Sx : x"(x) = ||x*||} are called
the exposed faces of By.
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RIUZLVIERYGNOEI  TOPOLOGY OF SUPPORTING VECTORS

TOPOLOGY OF SUPPORTING VECTORS

S. MORENO

SUPPORTING VECTORS

Notice that I\)l"::j)ll:l(w OF SUPPORTING
suppv(x*) = U Asuppv, (x").
GEOMETRY OF SUPPORTING
A€Sx VECTORS
APPLICATIONS OF SUPPORTING

COMPUTING SUPPORTING

REMARK
If K=Rand x* # 0, then {suppvl (x*)’ _suppvl(x*)} are the on]y two OPTIMIZATION PROBLEMS

MULTIOBIECTIVE
connected components of suppv(x*), hence they are the only two
convex components. o

OPTIMIZATION PROBLEMS

THEOREM APPLICATIONS TO

BIOENGINEERING

If K = C and x* # 0, then suppv(x¥) is path-connected and the convex s o L

coILs.

components of suppv(x*) are {Asuppv, (x*) : 4 € Sc}. REFERENCES
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RIUZIEVINERYLENI  GEOMETRY OF SUPPORTING VECTORS

GEOMETRY OF SUPPORTING VECTORS

THEOREM
Let X and Y be normed spaces and let 7 : X — Y be a non-zero

continuous linear operator. Then:
1. suppv(T) = U suppv, (y* o 7).
y*esuppv(T*)
2. If C is a convex component of suppv(7), then
C = suppv,(y* o T) for some y* € suppv(T™).
3. If Y is smooth, then every non-empty suppv, (y* o T) with
y* € suppv(T™) is a convex component of suppv (7).

THEOREM
Let X be a normed space. The following are equivalent:

1. The exposed faces of By are pairwise disjoint.
2. Every non-empty suppv, (y* o T) with y* € suppv(T*) is a

convex component of suppv(7) for every normed space Y and

every non-zero continuous linear operator 7 : X — Y.
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APPLICATIONS OF SUPPORTING VECTORS
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DEFINITION OF SUPPORTING
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TOPOLOGY OF SUPPORTING
VECTORS

GEOMETRY OF SUPPORTING

THEOREM
Let X be a Banach space and let P : X — X be a projection. The

following conditions are equivalent: ey
1. P is an M-projection, that is, ||x|| = max{||P(x)|], ||(I = P)(x)||} S
forall x € X. et

2. Pis (1,1), thatis, |P|| = |/ - P|| = 1, and O e
SX = SuppV(P) U SuppV(I - P). APPLICATIONS TO
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RV IRYLGNOEIN  APPLICATIONS OF SUPPORTING VECTORS

APPLICATIONS OF SUPPORTING VECTORS

DEFINITION (SUPPORTING SEQUENCE)

Let X and Y be normed spaces and 7 : X — Y a continuous linear
operator. A sequence (x,),eny C Sy is called

> a supporting sequence of T provided that ||T(x,)|| — ||T|| as
n— oo,

» and a null sequence for T provided that ||T(x,)|| — 0 as n — oo.
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APPLICATIONS OF SUPPORTING VECTORS

SUPPORTING VECTORS

APPLICATIONS OF SUPPORTING VECTORS

THEOREM
Let X be a Banach space and P : X — X a projection. Then:

1. If there exists a supporting sequence of P which is null for  — P,
then ||P|| = 1.

2. If suppv (P) nker(I — P) # @, then ||P]| = 1.

3. If X is uniformly convex and ||P|| = 1, then every supporting
sequence of P is null for 7 — P.

4. If X is strictly convex and ||P|| = 1, then suppv (P) C ker(I — P).

COROLLARY
Let X be a strictly convex Banach space and P : X — X a projection.
The following conditions are equivalent:

1. IP]| = 1.
2. @ # suppv (P) C ker(I — P).
3. suppv (P) nker(I — P) # @.
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SUPPORTING VECTORS IN HILBERT SPACES
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THEOREM

VECTORS

Consider H, K Hilbert spaces, and T € B(H, K). Then: AN or SO
LAITI? = 1T o T|.
2. suppV(T) C suppv (T, o T). OPTIMIZATION PROBLEMS

MULTIOBIECTIVE
OPTIMIZATION PROBLEMS

3. suppv(T) # @ ifand only if |[T" o T|| € 03, (T o T). —

OPERATOR MULTIOBIECTIV

In this situation, ||T'|| = y/Amax (I” o T) and

APPLICATIONS TO
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OPTIMAL DESIGN OF TMS
coILs.

REFERENCES

S. MORENO EXACT SOLUTIONS TO OPTIMIZATION PROBLEMS THROUGH SU 10/37
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SUPPORTING VECTORS IN {] —NORM

Recall that supp(x) := {n € N : x(n) # 0}. e
SUPPORTING VECTORS

THEOREM N —

Let T : £ — Y be a nonzero continuous linear operator between € R

and a normed space Y. For every x € {1, ERR—

o) 00 VECTORS
T(x) =) x(mT(e) and [T < ) xmIT(enl.
n=1 n=1 OPTIMIZATION PROBLEMS

MutT

Also, ||IT|| = sup{||T(e,)|| : n € N}. As a consequence, suppv(T) # @ (
if and only if N # @, where N := {n € N : ||T|| = |IT (en)||}. In this :
situation,

T
10N PROBLEMS

BIECTIVE

APPLICATIONS TO
BIOENGINEERING

OPTIMAL DESIGN OF TMS
co

suppv(T) = {y € S¢, : supp(y) C N and

ST =] |y<n)|||T(en>||} .

neN nenN
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RIUZZETINERYIEN I COMPUTING SUPPORTING VECTORS IN CLASSICAL SPACES

SUPPORTING VECTORS IN £+, —NORM

S. MORENO
THEOREM
. . SUPPORTING VECTORS
Let T : ¢y — ¢ be a nonzero continuous linear operator. For every x € cg, ., _
00 00 00 TOPOLOGY OF SUPPORTING
T(x) = ( x(n)T(en)(i)) e; and ||T(x)|lo = sup E x(n)T(en) (D) - e —
i=1 \n=1 i€N =1

APPLICATIONS OF SUPPORTING
VECTORS

OPTIMIZATION PROBLEMS

(e8]
Also, ||T||eo = supz |T(en)(i)| . As a consequence, suppv(T) # @ if and
ieN

n=1 MutiosCTIv:
only if I} # @, where
OPTIMALITY

OPERATOR MULTIOBIECTIV

00 0o OPTIMIZATION PROBLEMS
I =iy €N 2 Y [T(en)(in)| = sup Y [T(en) ()| and N is finite —
n=1 ieN n=1 BIOENGINEERING

OPTIMAL DESIGN OF TMS
coILs.

with N;, == {n € N : T(e,)(i1) # 0}. In this situation,

REFERENCES

suppv(T) = {xlz €8¢y || =1and3Fiy €} VYneN; z(n) = %} .
n)\t]
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MULTIOBJECTIVE OPTIMIZATION PROBLEMS

DEFINITION (MULTI—OBJECTIVE OPTIMIZATION PROBLEM)
Let X be a non-empty set. Letf;,g;: X - R,i=1,...,p,

j=1,...,q, be functions and let R be a non-empty subset of X. The
problem

maxfi(x) i=1,...,p,

ming;j(x) j=1,...,q, )

xeR,
is called a multi-objective optimization problem (MOP).

> The functions f;, g, : X > R,i=1,...
objective functions.

,p.j=1,...,q, are called

> The set R is called feasible region, region of
constrains/restrictions, or set of feasible solutions, and it is often
denoted as fsol(1).
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OPTIMAL SOLUTIONS AND PARETO SOLUTIONS

DEFINITION (OPTIMAL SOLUTION)
The set of optimal solutions of (1) is defined as osol(1) := {x € R :
Vi=1,...,pVj=1,...,qV¥y € R,fi(x) = fi(y) and g;(x) < g;(»)}.
> Due to the often lack of optimal solutions, Pareto solutions are
introduced:

DEFINITION (PARETO OPTIMAL SOLUTION)

The set of Pareto optimal solutions of (1) is defined as

psol(1) := {x € R : If y € R satisfies that there exists i € {1,...,p}
with f;(y) > fi(x) orexists j € {1, ..., g} with g;(y) < g;(x), then

there exists i’ € {1,...,p} with fy(y) < fy(x) orexistsj’ € {1,...,q}

with gj/(X) < g/(Y)}
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OPTIMIZATION PROBLEMS  IOJ2ViVFNRE 81

SPLITTING THE MOP inTO SOPs

REMARK

Note that

osol(1) = osol(P1) N --- Nosol(Pp) Nosol(Q1) N ---Nosol(Qy),
where

| maxfi(x), ~._ | ming;(x),
Pim| TR e g | TR

are single-objective optimization problems (SOPs).
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SORTING FEASIBLE SOLUTIONS FROM LESS OPTIMAL
TO MORE OPTIMAL 5. Mogeno

SUPPORTING VECTORS

DEFINITION OF SUPPORTING
VECTOR

TOPOLOGY OF SUPPORTING

REMARK
Consider in R the equivalence relation given by P

COMPUTING SUPPORTING

S={n) €RVi=Lop fi) =)

andVj=1,....q gx)=g(}.

OPERATOR MULTIOBIECTIV

Consider in the quotient set of R by S, /s, the order relation given by
APPLICATIONS TO
. BIOENGINEERING
[xls < [Yls @ Vi=1,....p filx) <fi(y) @) s
andVj=1,...,q g(y) < g(x).
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TOPOLOGICAL EXPRESSION OF OPTIMAL AND
PARETO SOLUTIONS

SUPPORTING VECTORS

DEFINITION OF SUPPORTING
THEOREM oo suvorng
Given a multiobjective optimization problem (1), Growere or surore

APPLICATIONS OF SUPPORTING
VECTORS

psol(1) = {x € R : [x] s is a maximal element of ®/s endowed with <} ... oo

VECTORS IN CLASSICAL SPACES

OPTIMIZATION PROBLEMS

and P
osol(1) = {x € R : [x] s is the maximum of ®/s endowed with <} . Orron woromcr

As a consequence, osol(1) € psol(1) and if osol(1) # @, then i

osol(1) = psol(1). Even more, if there exists i; € {1,...,p} or S

J1 € {1,...,q} such that osol(P;,) or psol(Q;, ) is a singleton, REFERENCES

respectively, then osol(P;,) € psol(1) or osol(Q},) < psol(1),

respectively.
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OPTIMIZATION PROBLEMS  [SNOJ501VINR{ 3

EXISTENCE OF PARETO SOLUTIONS

THEOREM
Given a multiobjective problem (1), set

ioe{l,....,phjoe{l,...,q}. Then:
1. If there exists x;, € R such that [x;, ]  is a maximal element of
{[x]s : x € argmaxg f;, }, then [x;, | ¢ is a maximal element of
R/s. Hence, x;, € psol(1).
2. If there exists xj, € R such that [x;, | ¢ is a maximal element of
{[x] S : X € arg ming gjo}, then [xjo] s is a maximal element of
R/s. Hence, xj, € psol(1).

THEOREM

Given a multiobjective problem (1), if X is a topological space, R is a
compact Hausdorff subset of X and all the objective functions are
continuous, then psol(1) # @.
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REFORMULATIONS OF THE ORIGINAL
MULTIOBJECTIVE PROBLEM I S. Moreo

SUPPORTING VECTORS

THEOREM

Consider the multiobjective problem (1). Suppose that Loraroarorsuorg
F:ACRP - Rand G: B C R? — R are strictly increasing where St

{(i),....fp(x)) :x e R} CAand Arrchmans on seommig
{(g1(x),...,84(x)) : x € R} C B. Consider also the MOP Conuria soror

OPTIMIZATION PROBLEMS
max F (f x),....f (x)) MoLmioBiEcrive
145 »Jp d ST
min G (g1(x),...,8,(x)), 4)
OPERATOR MULTIOBJECTIVE
xEeR. OPTIMIZATION PROBLEMS

APPLICATIONS TO
BIOENGINEERING

Then: OFmauaL pesiaw oF TMS

1. psol(4) C psol(1). REFERENCES
2. If osol(1) # 0, then osol(1) = osol(4).
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REFORMULATIONS OF THE ORIGINAL
MULTIOBJECTIVE PROBLEM I B

SUPPORTING VECTORS

THEOREM ——
Consider the multiobjective problem (1). Suppose that s

VECTORS

F:ACRP - Rand G : B CRY — R are strictly increasing where R

{(Ait),....fp(x) s x e R} C Aand R
{(g1(x),...,84(x)) : x € R} C B. Suppose also that

COMPUTING SUPPORTING

F(fi(x),....fp(x)) > 0and G (g1(x),...,84(x)) > 0forall x € R.

. OPTIMIZATION PROBLEMS
Consider the SOP E—

OPTIMIZATION PROBLEMS

F(fi(x),....f,(x) e

X OPTIMIZAT
G (81(0).- - 8(0) S
X € R. BIOENGINEERING

OPTIMAL DESIGN OF TMS

BIECTIVE

Then: REFERENCES
1. osol(5) C psol(1).
2. If osol(1) # O, then osol(1) = osol(5).
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REFORMULATIONS OF THE ORIGINAL
MULTIOBJECTIVE PROBLEM III

S. MORENO

Recall that a family of real-valued functions {4y, : k € K} defined on a set A is
not simultaneously zero if for every a € A there exists k € K such that
hi(a) # 0. In other words, ﬂ h,:l ({0}) = 0.

keK

COROLLARY
Consider the multiobjective problem (1). Suppose that f;(x), gj(x) = 0 for all
xeRallie{l,...,plandallje{l,...,q}, and that the families

{fi,....fpYand {g1, ..., g4} are not simultaneously zero in R. Consider the
SopP
[+ +fp(0)?
ax >
81002+ +gg(x)? ©)
xeR.

Then:
1. o0sol(6) C psol(1).
2. Ifosol(1) # @, then osol(1) = osol(6).
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OPERATOR MULTIOBJECTIVE OPTIMIZATION
PROBLEMS

DEFINITION (OPERATOR MOP)

An operator multi-objective problem (OMOP) is a special type of
MOP given by

max | T;(0)|l i=1,...,p,
min [|S;(0)|l j=1,....q, @)
X E€R,

where T, S; : X — Y are continuous linear operators, i = 1,...,p,
Jj=1,...,¢q, between normed spaces X, Y, and R is a non-empty
subset of X.
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SIMPLIFICATION THEOREMS ON THE OMOP

REMARK
The functions

F: [0,00)) — R

1

(1eestp) o Floteg) = o)l = (22, )

G: [0,0) — R
(¥1aenonxy) o G(xl,...,xq):=||(x1,...,xq)||,=(z

are strictly increasing, where 1 < r < co.
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(OPERATOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS

OPTIMIZATION PROBLEMS

SIMPLIFICATION THEOREMS ON THE OMOP

COROLLARY
Consider the OMOP (7). According to Theorem 18,
psol(8) C psol(7), and if osol(7) # @, then 0sol(7) = osol(8), where

max /|71 ()" +- - + [T, (x)[|”
min/[Si )"+ + S, =
xeR.

max ||T(x)]|,
min ||S(x) ||, (®)
xeR

COROLLARY

Consider the OMOP (7). If R € X \ (ﬂf:] ker(T;) U ﬂ;?:l ker(Sj)).
According to Theorem 19, 0s0l(9) C psol(7), and if osol(7) # @, then
osol(7) = osol(9), where

VITi (Ol + - - + [T, (0)[I”
max
VISION + -+ + 1S ()" =
R

LG B
ISl )]
xeR

X €
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SUPPORTING VECTORS

DEFINITION OF SUPPORTING

Consider the MOP
TOPOLOGY OF SUPPORTING
max ||T(x)]|,

: S 10 GEOMETRY OF SUPPORTING
min ||S(x)||,
APPLICATIONS OF SUPPORTING

x e X.

COMPUTING SUPPORTING
VECTORS IN CLASSICAL SPACES

and the SOPs

OPTIMIZATION PROBLEMS

MULTIOBIECTIVE

min ||S(x)||, -
OPTIMALITY
17l > 1,

max [|T(x)|l,

A= sl < 1,

B] =

APPLICATIONS TO
ISGol max 71l Bommanemne
= “S(x) ” ’ OPTIMAL DESIGN OF TMS
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min
Ci: T 11
Tl # 0,
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THEOREM
Let X, Y be normed spaces and T, S : X — Y continuous linear
operators. Then:

1. If ker(S) \ ker(T) # @, then psol(10) = osol(A;) = @.
2. Ifker(S) C ker(7T) € X, then 0sol(A;) C {x € X : [|S(x)|| = 1}.
3. Ifker(S) C ker(7T), then ker(S) C psol(10) and
psol(10) = Rpsol(10).
4. psol(10) \ ker(S) € R*osol(A)).
5. Ifker(S) C ker(T) C X, then osol(A;) C psol(10).
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DEFINITION OF SUPPORTING
THEOREM
. TOPOLOGY OF SUPPORTING
Let X, Y be normed spaces and 7, S : X — Y nonzero continuous
linear operators. Then: e —
APPLICATIONS OF SUPPORTING
1. 0sol(Dy) = U;sq tosol(Ay). e
2. 0501(C1) = Uyug 050l (By).
OPTIMIZATION PROBLEMS
3. If osol(A;) # 0, then ker(S) < ker(T). S
4. If X is finite dimensional, then osol(A1) # 0 if and only if s

ker(S) C ker (7). o
If ker(S) C ker(T), then osol(C;) = osol(Dy). BIOENGINEERING

6. If ker(S) \ ker(7) # 0, then osol (B) = ker(S) \ Ur(x) and o
osol (Cy) = ker(S) \ ker(T).

e

REFERENCES
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PN RONL O XER (R IANCIHTNIN  OPTIMAL DESIGN OF TMS coILS

EXAMPLE

max || Exy|l> max ”Exl/’”§

max ||[Eyy||> _ ) max ||Eygb||% Theogm 18
max ||Ez¥ |2 max ”Ez‘ﬁuz

min g Ry min [|Cy |3 (R=CTC)

{ max |[Ex|I3 + | Ew 113 + IEw 113 :{ max [|EY ]l . _
min [|Cy |3 min [|Cy 1>

& I

Theorem24{ max||El//||2 _{ max ||EC_1¢||§ Theng
ICyll <1 llglla <1

SOLUTION
¥ = C~'¢ where ¢ is a unit eigenvector of Amax ((EC‘I)T (EC‘I))
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L [R [Du Col | T

(pH) | (mQ) | (cm) (N-m~2) (MPa)

CoilSO | 18.1 134 2.01 20.3 4.30 x10% | 1.09

CoilS 19.0 152 2.15 22.2 2.79 x 105 [ 0.94
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