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Supporting vectors Definition of supporting vector

Supporting vectors

Supporting vectors appear implicitly in the literature of Operator
Theory and Banach Space Geometry through famous theorems such
as Hahn-Banach, James, Lindenstrauss, Bishop-Phelps-Bollobás, etc.

Definition (Supporting vector)
Let T : X → Y be a continuous linear operator between normed
spaces X, Y . The set of supporting vectors of T is defined as

suppv(T) := {x ∈ SX : ∥T (x)∥ = ∥T ∥}.

Definition (Exposed faces)
If x∗ ∈ X∗ ≠ 0, then suppv1 (x∗) := {x ∈ SX : x∗ (x) = ∥x∗∥} are called
the exposed faces of BX .
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Supporting vectors Topology of supporting vectors

Topology of supporting vectors

Notice that
suppv(x∗) =

⋃
𝜆∈SK

𝜆suppv1 (x∗).

Remark
If K = R and x∗ ≠ 0, then {suppv1 (x∗),−suppv1 (x∗)} are the only two
connected components of suppv(x∗), hence they are the only two
convex components.

Theorem
If K = C and x∗ ≠ 0, then suppv(x∗) is path-connected and the convex
components of suppv(x∗) are {𝜆suppv1 (x∗) : 𝜆 ∈ SC}.
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Supporting vectors Geometry of supporting vectors

Geometry of supporting vectors
Theorem
Let X and Y be normed spaces and let T : X → Y be a non-zero
continuous linear operator. Then:

1. suppv(T) =
⋃

y∗∈suppv(T∗)
suppv1 (y∗ ◦ T).

2. If C is a convex component of suppv(T), then
C = suppv1 (y∗ ◦ T) for some y∗ ∈ suppv(T∗).

3. If Y is smooth, then every non-empty suppv1 (y∗ ◦ T) with
y∗ ∈ suppv(T∗) is a convex component of suppv(T).

Theorem
Let X be a normed space. The following are equivalent:

1. The exposed faces of BX are pairwise disjoint.
2. Every non-empty suppv1 (y∗ ◦ T) with y∗ ∈ suppv(T∗) is a

convex component of suppv(T) for every normed space Y and
every non-zero continuous linear operator T : X → Y .
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Supporting vectors Applications of supporting vectors

Applications of supporting vectors

Theorem
Let X be a Banach space and let P : X → X be a projection. The
following conditions are equivalent:

1. P is an M-projection, that is, ∥x∥ = max{∥P(x)∥, ∥(I − P) (x)∥}
for all x ∈ X.

2. P is (1, 1), that is, ∥P∥ = ∥I − P∥ = 1, and
SX = suppv(P) ∪ suppv(I − P).
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Supporting vectors Applications of supporting vectors

Applications of supporting vectors

Definition (Supporting sequence)
Let X and Y be normed spaces and T : X → Y a continuous linear
operator. A sequence (xn)n∈N ⊆ SX is called
▶ a supporting sequence of T provided that ∥T (xn)∥ → ∥T ∥ as

n → ∞,
▶ and a null sequence for T provided that ∥T (xn)∥ → 0 as n → ∞.
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Supporting vectors Applications of supporting vectors

Applications of supporting vectors

Theorem
Let X be a Banach space and P : X → X a projection. Then:

1. If there exists a supporting sequence of P which is null for I − P,
then ∥P∥ = 1.

2. If suppv (P) ∩ ker(I − P) ≠ ∅, then ∥P∥ = 1.
3. If X is uniformly convex and ∥P∥ = 1, then every supporting

sequence of P is null for I − P.
4. If X is strictly convex and ∥P∥ = 1, then suppv (P) ⊆ ker(I − P).

Corollary
Let X be a strictly convex Banach space and P : X → X a projection.
The following conditions are equivalent:

1. ∥P∥ = 1.
2. ∅ ≠ suppv (P) ⊆ ker(I − P).
3. suppv (P) ∩ ker(I − P) ≠ ∅.
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Supporting vectors Computing supporting vectors in classical spaces

Supporting vectors in Hilbert spaces

Theorem
Consider H,K Hilbert spaces, and T ∈ B(H,K). Then:

1. ∥T ∥2 = ∥T ′ ◦ T ∥.
2. suppv(T) ⊆ suppv (T ′ ◦ T).
3. suppv(T) ≠ ∅ if and only if ∥T ′ ◦ T ∥ ∈ 𝜎p (T ′ ◦ T).

In this situation, ∥T ∥ =
√
𝜆max (T ′ ◦ T) and

suppv(T) = V (𝜆max (T ′ ◦ T)) ∩ SH .

S. Moreno Exact solutions to optimization problems through supporting vectors analysis 10 / 37



Exact solutions to
optimization problems
through supporting

vectors analysis

S. Moreno

Supporting vectors
Definition of supporting
vector

Topology of supporting
vectors

Geometry of supporting
vectors

Applications of supporting
vectors

Computing supporting
vectors in classical spaces

Optimization problems
Multiobjective
optimization problems

Optimality

Operator multiobjective
optimization problems

Applications to
Bioengineering
Optimal design of TMS
coils

References

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Supporting vectors Computing supporting vectors in classical spaces

Supporting vectors in ℓ1−norm
Recall that supp(x) := {n ∈ N : x(n) ≠ 0}.
Theorem
Let T : ℓ1 → Y be a nonzero continuous linear operator between ℓ1
and a normed space Y. For every x ∈ ℓ1,

T (x) =
∞∑

n=1
x(n)T (en) and ∥T (x)∥ ≤

∞∑
n=1

|x(n) |∥T (en)∥.

Also, ∥T ∥ = sup{∥T (en)∥ : n ∈ N}. As a consequence, suppv(T) ≠ ∅
if and only if N ≠ ∅, where N := {n ∈ N : ∥T ∥ = ∥T (en)∥}. In this
situation,

suppv(T) =
{
y ∈ Sℓ1 : supp(y) ⊆ N and




∑

n∈N
y(n)T (en)






 = ∑
n∈N

|y(n) |∥T (en)∥
}
.
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Supporting vectors Computing supporting vectors in classical spaces

Supporting vectors in ℓ∞−norm

Theorem
Let T : c0 → c0 be a nonzero continuous linear operator. For every x ∈ c0,

T (x) =
∞∑
i=1

( ∞∑
n=1

x(n)T (en) (i)
)

ei and ∥T (x)∥∞ = sup
i∈N

����� ∞∑
n=1

x(n)T (en)(i)
����� .

Also, ∥T ∥∞ = sup
i∈N

∞∑
n=1

|T (en) (i) | . As a consequence, suppv(T) ≠ ∅ if and

only if I1 ≠ ∅, where

I1 :=

{
i1 ∈ N :

∞∑
n=1

|T (en) (i1) | = sup
i∈N

∞∑
n=1

|T (en)(i) | and Ni1 is finite

}
with Ni1 := {n ∈ N : T (en) (i1) ≠ 0}. In this situation,

suppv(T) =
{
𝜆z ∈ Sc0 : |𝜆 | = 1 and ∃i1 ∈ I1 ∀n ∈ Ni1 z(n) = |T (en) (i1) |

T (en) (i1)

}
.
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Optimization problems Multiobjective optimization problems

Multiobjective optimization problems

Definition (Multi-objective optimization problem)
Let X be a non-empty set. Let fi, gj : X → R, i = 1, . . . , p,
j = 1, . . . , q, be functions and let R be a non-empty subset of X. The
problem 

max fi (x) i = 1, . . . , p,
min gj (x) j = 1, . . . , q,
x ∈ R,

(1)

is called a multi-objective optimization problem (MOP).

▶ The functions fi, gj : X → R, i = 1, . . . , p, j = 1, . . . , q, are called
objective functions.

▶ The set R is called feasible region, region of
constrains/restrictions, or set of feasible solutions, and it is often
denoted as fsol(1).
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Optimization problems Optimality

Optimal solutions and Pareto solutions

Definition (Optimal solution)
The set of optimal solutions of (1) is defined as osol(1) := {x ∈ R :
∀i = 1, . . . , p ∀j = 1, . . . , q ∀y ∈ R, fi (x) ≥ fi (y) and gj (x) ≤ gj (y)}.
▶ Due to the often lack of optimal solutions, Pareto solutions are

introduced:

Definition (Pareto optimal solution)
The set of Pareto optimal solutions of (1) is defined as
psol(1) := {x ∈ R : If y ∈ R satisfies that there exists i ∈ {1, . . . , p}
with fi (y) > fi (x) or exists j ∈ {1, . . . , q} with gj (y) < gj (x), then
there exists i′ ∈ {1, . . . , p} with fi′ (y) < fi′ (x) or exists j′ ∈ {1, . . . , q}
with gj′ (x) < gj′ (y)}.
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Optimization problems Optimality

Splitting the MOP into SOPs

Remark
Note that
osol(1) = osol(P1) ∩ · · · ∩ osol(Pp) ∩ osol(Q1) ∩ · · · ∩ osol(Qq),
where

Pi :=
{

max fi (x),
x ∈ R, and Qj :=

{
min gj (x),
x ∈ R,

are single-objective optimization problems (SOPs).
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Optimization problems Optimality

Sorting feasible solutions from less optimal
to more optimal

Remark
Consider in R the equivalence relation given by

S :=
{
(x, y) ∈ R2 : ∀i = 1, . . . , p, fi (x) = fi (y)

and ∀j = 1, . . . , q, gj (x) = gj (y)
}
.

(2)

Consider in the quotient set of R by S, R/S, the order relation given by

[x]S ≤ [y]S ⇔ ∀i = 1, . . . , p fi (x) ≤ fi (y)
and ∀j = 1, . . . , q gj (y) ≤ gj (x).

(3)
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Optimization problems Optimality

Topological expression of optimal and
Pareto solutions

Theorem
Given a multiobjective optimization problem (1),

psol(1) = {x ∈ R : [x]S is a maximal element of R/S endowed with ≤}

and

osol(1) = {x ∈ R : [x]S is the maximum of R/S endowed with ≤} .

As a consequence, osol(1) ⊆ psol(1) and if osol(1) ≠ ∅, then
osol(1) = psol(1). Even more, if there exists i1 ∈ {1, . . . , p} or
j1 ∈ {1, . . . , q} such that osol(Pi1 ) or psol(Qj1 ) is a singleton,
respectively, then osol(Pi1 ) ⊆ psol(1) or osol(Qj1 ) ⊆ psol(1),
respectively.
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Optimization problems Optimality

Existence of Pareto solutions

Theorem
Given a multiobjective problem (1), set
i0 ∈ {1, . . . , p}, j0 ∈ {1, . . . , q}. Then:

1. If there exists xi0 ∈ R such that
[
xi0

]
S is a maximal element of{

[x]S : x ∈ arg maxR fi0
}
, then

[
xi0

]
S is a maximal element of

R/S. Hence, xi0 ∈ psol(1).
2. If there exists xj0 ∈ R such that

[
xj0

]
S is a maximal element of{

[x]S : x ∈ arg minR gj0
}
, then

[
xj0

]
S is a maximal element of

R/S. Hence, xj0 ∈ psol(1).

Theorem
Given a multiobjective problem (1), if X is a topological space, R is a
compact Hausdorff subset of X and all the objective functions are
continuous, then psol(1) ≠ ∅.
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Optimization problems Optimality

Reformulations of the original
multiobjective problem I

Theorem
Consider the multiobjective problem (1). Suppose that
F : A ⊆ Rp → R and G : B ⊆ Rq → R are strictly increasing where
{
(
f1 (x), . . . , fp (x)

)
: x ∈ R} ⊆ A and

{
(
g1 (x), . . . , gq (x)

)
: x ∈ R} ⊆ B. Consider also the MOP

max F
(
f1 (x), . . . , fp (x)

)
,

min G
(
g1 (x), . . . , gq (x)

)
,

x ∈ R .
(4)

Then:
1. psol(4) ⊆ psol(1).
2. If osol(1) ≠ ∅, then osol(1) = osol(4).
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Optimization problems Optimality

Reformulations of the original
multiobjective problem II
Theorem
Consider the multiobjective problem (1). Suppose that
F : A ⊆ Rp → R and G : B ⊆ Rq → R are strictly increasing where
{
(
f1 (x), . . . , fp (x)

)
: x ∈ R} ⊆ A and

{
(
g1 (x), . . . , gq (x)

)
: x ∈ R} ⊆ B. Suppose also that

F
(
f1 (x), . . . , fp (x)

)
> 0 and G

(
g1 (x), . . . , gq (x)

)
> 0 for all x ∈ R.

Consider the SOP  max
F

(
f1 (x), . . . , fp (x)

)
G

(
g1 (x), . . . , gq (x)

) ,
x ∈ R .

(5)

Then:
1. osol(5) ⊆ psol(1).
2. If osol(1) ≠ ∅, then osol(1) = osol(5).
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Optimization problems Optimality

Reformulations of the original
multiobjective problem III

Recall that a family of real-valued functions {hk : k ∈ K} defined on a set A is
not simultaneously zero if for every a ∈ A there exists k ∈ K such that
hk (a) ≠ 0. In other words,

⋂
k∈K

h−1
k ({0}) = ∅.

Corollary
Consider the multiobjective problem (1). Suppose that fi (x), gj (x) ≥ 0 for all
x ∈ R, all i ∈ {1, . . . , p} and all j ∈ {1, . . . , q}, and that the families
{f1, . . . , fp} and {g1, . . . , gq} are not simultaneously zero in R. Consider the
SOP  max

f1 (x)2 + · · · + fp (x)2

g1 (x)2 + · · · + gq (x)2
,

x ∈ R .

(6)

Then:

1. osol(6) ⊆ psol(1).

2. If osol(1) ≠ ∅, then osol(1) = osol(6).
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Optimization problems Operator multiobjective optimization problems

Operator Multiobjective Optimization
Problems

Definition (Operator MOP)
An operator multi-objective problem (OMOP) is a special type of
MOP given by 

max ∥Ti (x)∥ i = 1, . . . , p,
min ∥Sj (x)∥ j = 1, . . . , q,
x ∈ R,

(7)

where Ti, Sj : X → Y are continuous linear operators, i = 1, . . . , p,
j = 1, . . . , q, between normed spaces X, Y , and R is a non-empty
subset of X.
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

Remark
The functions

F : [0,∞)p → R

(x1, . . . , xp) ↦→ F(x1, . . . , xp) := ∥(x1, . . . , xp)∥r =
(∑p

i=1 xr
i

) 1
r

G : [0,∞)q → R

(x1, . . . , xq) ↦→ G(x1, . . . , xq) := ∥(x1, . . . , xq)∥r =
(∑q

i=1 xr
i

) 1
r

are strictly increasing, where 1 ≤ r < ∞.
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP
Corollary
Consider the OMOP (7). According to Theorem 18,
psol(8) ⊆ psol(7), and if osol(7) ≠ ∅, then osol(7) = osol(8), where

max r
√
∥T1 (x)∥r + · · · + ∥Tp (x)∥r

min r
√
∥S1 (x)∥r + · · · + ∥Sq (x)∥r

x ∈ R .

=


max ∥T (x)∥r
min ∥S(x)∥r
x ∈ R

(8)

Corollary
Consider the OMOP (7). If R ⊆ X \

(⋂p
i=1 ker(Ti) ∪

⋂q
j=1 ker(Sj)

)
.

According to Theorem 19, osol(9) ⊆ psol(7), and if osol(7) ≠ ∅, then
osol(7) = osol(9), where

max
√
∥T1 (x)∥r + · · · + ∥Tp (x)∥r√
∥S1 (x)∥r + · · · + ∥Sq (x)∥r

x ∈ R
=

 max
∥T (x)∥r

∥S(x)∥r
x ∈ R

(9)
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

where
T : X → ℓ

p
r (Y) := Y⊕r

p· · · ⊕rY
x ↦→ T (x) :=

(
T1 (x), . . . , Tp (x)

)
and

S : X → ℓ
q
r (Y) := Y⊕r

q· · · ⊕rY
x ↦→ S(x) :=

(
S1 (x), . . . , Sq (x)

)
.
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

Consider the MOP 
max ∥T (x)∥,
min ∥S(x)∥,
x ∈ X.

(10)

and the SOPs

A1 :=
{

max ∥T (x)∥,
∥S(x)∥ ≤ 1, B1 :=

{
min ∥S(x)∥,
∥T (x)∥ ≥ 1,

C1 :=

{
min ∥S(x) ∥

∥T (x) ∥ ,

∥T (x)∥ ≠ 0,
D1 :=

{
max ∥T (x) ∥

∥S(x) ∥ ,

∥S(x)∥ ≠ 0.
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

Theorem
Let X, Y be normed spaces and T , S : X → Y continuous linear
operators. Then:

1. If ker(S) \ ker(T) ≠ ∅, then psol(10) = osol(A1) = ∅.
2. If ker(S) ⊆ ker(T) ⊊ X, then osol(A1) ⊆ {x ∈ X : ∥S(x)∥ = 1}.
3. If ker(S) ⊆ ker(T), then ker(S) ⊆ psol(10) and

psol(10) = Rpsol(10).
4. psol(10) \ ker(S) ⊆ R+osol(A1).
5. If ker(S) ⊆ ker(T) ⊊ X, then osol(A1) ⊆ psol(10).
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

Theorem
Let X, Y be normed spaces and T , S : X → Y nonzero continuous
linear operators. Then:

1. osol(D1) =
⋃

t>0 tosol(A1).
2. osol(C1) =

⋃
t>0 tosol(B1).

3. If osol(A1) ≠ ∅, then ker(S) ⊆ ker(T).
4. If X is finite dimensional, then osol(A1) ≠ ∅ if and only if

ker(S) ⊆ ker(T).
5. If ker(S) ⊆ ker(T), then osol(C1) = osol(D1).
6. If ker(S) \ ker(T) ≠ ∅, then osol (B1) = ker(S) \ UT (X) and

osol (C1) = ker(S) \ ker(T).
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Optimization problems Operator multiobjective optimization problems

Simplification theorems on the OMOP

Corollary
If T ≠ 0, then Rsuppv(T) = psol(11), where

max ∥T (x)∥,
min ∥x∥,
x ∈ X.

(11)
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Applications to Bioengineering Optimal design of TMS coils

Example


max ∥Ex𝜓∥2
max ∥Ey𝜓∥2
max ∥Ez𝜓∥2
min𝜓TR𝜓

=


max ∥Ex𝜓∥2

2
max ∥Ey𝜓∥2

2
max ∥Ez𝜓∥2

2
min ∥C𝜓∥2

2 (R = CTC)

Theorem 18⇒

{
max ∥Ex𝜓∥2

2 + ∥Ey𝜓∥2
2 + ∥Ez𝜓∥2

2
min ∥C𝜓∥2

2
=

{
max ∥E𝜓∥2
min ∥C𝜓∥2

E =
©­«

Ex
Ey
Ez

ª®¬
Theorem 24⇒

{
max ∥E𝜓∥2
∥C𝜓∥2 ≤ 1 =

{
max ∥EC−1𝜙∥2

2
∥𝜙∥2 ≤ 1

Theorem 8⇒

solution
𝜓 = C−1𝜙 where 𝜙 is a unit eigenvector of 𝜆max

( (
EC−1)T (

EC−1) )
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Optimal TMS coils

Conducting
surface

ROI

S. Moreno Exact solutions to optimization problems through supporting vectors analysis 33 / 37



Exact solutions to
optimization problems
through supporting

vectors analysis

S. Moreno

Supporting vectors
Definition of supporting
vector

Topology of supporting
vectors

Geometry of supporting
vectors

Applications of supporting
vectors

Computing supporting
vectors in classical spaces

Optimization problems
Multiobjective
optimization problems

Optimality

Operator multiobjective
optimization problems

Applications to
Bioengineering
Optimal design of TMS
coils

References

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Applications to Bioengineering Optimal design of TMS coils

Optimal TMS coils

Conducting
surface

ROI2
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