ODEs from a geometric viewpoint

Antonio J. Pan-Collantes

October 15, 2021

Index

1 Introduction

2 Lie approach and solvable structures

- Lie symmetries
- Solvable structures
- 3 \mathcal{C}^{∞} -symmetries and beyond

4 Bibliography

ODEs

Equation:

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{m-1)}(x))$$
 and

$$\begin{cases}
u(0) = c_0, \\
u'(0) = c_1 \\
\dots \\
u^{m-1}(0) = c_{m-1}
\end{cases}$$

where $F : \mathbb{R}^{m+1} \to \mathbb{R}$ with conditions...

ODEs

Equation:

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{m-1)}(x))$$
 and

$$\begin{cases}
u(0) = c_0, \\
u'(0) = c_1 \\
\dots \\
u^{m-1}(0) = c_{m-1}
\end{cases}$$

where $F : \mathbb{R}^{m+1} \to \mathbb{R}$ with conditions...

Solutions:

$$\iota u:D\subseteq\mathbb{R}\to\mathbb{R}?$$

Flow of vector fields

Fundamental theorem on flows

Given a vector field X on \mathbb{R}^n , then X has a unique maximal flow

$$\phi_t^X: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

Flow of vector fields

Fundamental theorem on flows

Given a vector field X on \mathbb{R}^n , then X has a unique maximal flow

$$\phi_t^X: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

Local group of transformations

Vector fields \iff local groups of transformations.

Flow of vector fields

Fundamental theorem on flows

Given a vector field X on \mathbb{R}^n , then X has a unique maximal flow

$$\phi_t^X: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

Local group of transformations

Vector fields \iff local groups of transformations.

ODE Existence, Uniqueness and Smoothness

$$\begin{cases} \dot{x}_1(t) = V_1(x_1, \dots, x_n) \\ \cdots = \cdots \\ \dot{x}_n(t) = V_n(x_1, \dots, x_n) \end{cases}$$

[Lee, 2013], [Olver, 1986]

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{m+1} \equiv (x, u, u_1, \ldots, u_{m-1})$$

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

Vector field

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{m+1} \equiv (x, u, u_1, \ldots, u_{m-1})$$

• $x \mapsto \phi_x^A(p)$ is a solution (its projection, indeed)

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{m+1} \equiv (x,u,u_1,\ldots,u_{m-1})$$

- $x \mapsto \phi_x^A(p)$ is a solution (its projection, indeed)
- Initial conditions given by $p \in J^{m-1}(\mathbb{R},\mathbb{R})$

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{m+1} \equiv (x, u, u_1, \ldots, u_{m-1})$$

- $x \mapsto \phi_x^A(p)$ is a solution (its projection, indeed)
- Initial conditions given by $p \in J^{m-1}(\mathbb{R},\mathbb{R})$
- First integrals ≡ implicit expressions

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{m+1} \equiv (x,u,u_1,\ldots,u_{m-1})$$

- $x \mapsto \phi_x^A(p)$ is a solution (its projection, indeed)
- Initial conditions given by $p \in J^{m-1}(\mathbb{R},\mathbb{R})$
- First integrals ≡ implicit expressions
- Reparameterization

ODE

$$u^{(m)}(x) = F(x, u(x), u'(x), \dots, u^{(m-1)}(x))$$

$$A = \partial x + u_1 \partial u + \ldots + F \partial u_{m-1},$$

with flow ϕ_x^A

$$J^{m-1}(\mathbb{R},\mathbb{R})=\mathbb{R}^{m+1}\equiv(x,u,u_1,\ldots,u_{m-1})$$

- $x \mapsto \phi_x^A(p)$ is a solution (its projection, indeed)
- Initial conditions given by $p \in J^{m-1}(\mathbb{R},\mathbb{R})$
- First integrals ≡ implicit expressions
- Reparameterization

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

Lie ideas

Lie point symmetry

Lie symmetries

First order equation

$$\frac{du}{dx} = F(x, u(x)) \longleftrightarrow -Fdx + du = 0$$

Lie symmetries

First order equation

$$\frac{du}{dx} = F(x, u(x)) \longleftrightarrow -Fdx + du = 0$$

From our point of view

Single line from a vector

1

 $r: \{\lambda \cdot (3,5): \lambda \in \mathbb{R}\}$

Lie symmetries

First order equation

$$\frac{du}{dx} = F(x, u(x)) \longleftrightarrow -Fdx + du = 0$$

From our point of view

Single line from a vector

 $r: \{\lambda \cdot (3,5): \lambda \in \mathbb{R}\}$

Single line from equations

$$\begin{vmatrix} 3 & x \\ 5 & u \end{vmatrix} = -5x + 3u = 0$$

Lie symmetries

First order equation

$$\frac{du}{dx} = F(x, u(x)) \longleftrightarrow -Fdx + du = 0$$

From our point of view

Single line from a vector

 $r: \{\lambda \cdot (3,5): \lambda \in \mathbb{R}\}$

Single line from equations

$$\begin{vmatrix} 3 & x \\ 5 & u \end{vmatrix} = -5x + 3u = 0$$

Family of lines from a vector field

$$A = \partial x + F \partial u = (1, F)$$

Lie symmetries

First order equation

$$\frac{du}{dx} = F(x, u(x)) \longleftrightarrow -Fdx + du = 0$$

From our point of view

Single line from a vector

 $r: \{\lambda \cdot (3,5): \lambda \in \mathbb{R}\}$

Single line from equations

$$\begin{vmatrix} 3 & x \\ 5 & u \end{vmatrix} = -5x + 3u = 0$$

Family of lines from a vector field

$$A = \partial x + F \partial u = (1, F)$$

Family of lines from family of equations

$$\begin{vmatrix} 1 & dx \\ F & du \end{vmatrix} = -Fdx + du = 0$$

Lie symmetries

Is this 1-form exact?

Exact 1-form

Lie symmetries

Is this 1-form exact?

Exact 1-form

٦

Lie symmetries

Is this 1-form exact?

Exact 1-form

Lie symmetries

Is this 1-form exact?

Exact 1-form

Lie symmetries

Is this 1-form exact?

Exact 1-form

Lie symmetries

Is this 1-form exact?

Exact 1-form

There exists a function $G: \mathbb{R}^2 \to \mathbb{R}$ such that dG = -Fdx + du

Lie symmetries

Is this 1-form exact?

Exact 1-form

There exists a function $G: \mathbb{R}^2 \to \mathbb{R}$ such that dG = -Fdx + du

- Lie approach and solvable structures
- Lie symmetries

Integrating factor

 μ such that there exists G with $dG = \mu(-Fdx + du)$

- Lie approach and solvable structures
- Lie symmetries

Integrating factor

 μ such that there exists G with $dG = \mu(-Fdx + du)$

Key result

If X is a Lie symmetry for A then

$$\frac{1}{\det(A,X)}$$

is an integrating factor for -Fdx + du, or in other words,

$$\omega = \frac{\det(A, -)}{\det(A, X)}$$

is exact (locally).

Lie approach and solvable structures

Lie symmetries

det (A,Y)

Lie approach and solvable structures

Lie symmetries

А

det (A, Y) = arca

Lie approach and solvable structures

Lie symmetries

Lie approach and solvable structures

Lie symmetries

Idea of the proof

det (A, Y) = area = base height

But base changes when we move along solution curves!

Lie approach and solvable structures

Lie symmetries

$\mathsf{Idea} \text{ of the proof}$

Lie symmetries

Lie symmetries

Lie symmetries

Solvable structures

Solvable structures

Higher order equations

Reduction method

Solvable structures

- Reduction method
- 1 Lie point symmetry \Rightarrow order reduction by 1

-Solvable structures

- Reduction method
- $\blacksquare~1$ Lie point symmetry \Rightarrow order reduction by 1
- *k* Lie point symmetries \Rightarrow order reduction by *k*

-Solvable structures

- Reduction method
- 1 Lie point symmetry \Rightarrow order reduction by 1
- *k* Lie point symmetries \Rightarrow order reduction by *k*
- *m*-th order equation with an *m*-dimensional solvable Lie algebra ⇒ integrability by cuadratures

-Solvable structures

- Reduction method
- 1 Lie point symmetry \Rightarrow order reduction by 1
- *k* Lie point symmetries \Rightarrow order reduction by *k*
- *m*-th order equation with an *m*-dimensional solvable Lie algebra ⇒ integrability by cuadratures
- The converse is not true ...

-Solvable structures

Higher order equations

- Reduction method
- 1 Lie point symmetry \Rightarrow order reduction by 1
- *k* Lie point symmetries \Rightarrow order reduction by *k*
- *m*-th order equation with an *m*-dimensional solvable Lie algebra ⇒ integrability by cuadratures
- The converse is not true ...

Solvable structures: [Basarab-Horwath, 1991]

Symmetries of involutive distributions instead of vector fields

-Solvable structures

Higher order equations

- Reduction method
- 1 Lie point symmetry \Rightarrow order reduction by 1
- *k* Lie point symmetries \Rightarrow order reduction by *k*
- *m*-th order equation with an *m*-dimensional solvable Lie algebra ⇒ integrability by cuadratures
- The converse is not true ...

Solvable structures: [Basarab-Horwath, 1991]

- Symmetries of involutive distributions instead of vector fields
- Given A, we aim to an ordered collection (X₁..., X_k) such that X_i is symmetry of the "previous distribution".

Solvable structures

Solvable structures

Solvable structures

-Solvable structures

Solvable structures

-Solvable structures

[X, A]=d.A

-Solvable structures

-Solvable structures

-Solvable structures

Main result

[Basarab-Horwath, 1991]

Given an ODE by the vector field A, the knowledge of a solvable structure for A is equivalent to the integrability by quadratures of the equation (locally).

Solvable structures

Main result

[Basarab-Horwath, 1991]

Given an ODE by the vector field A, the knowledge of a solvable structure for A is equivalent to the integrability by quadratures of the equation (locally).

Solvable structures

Main result

[Basarab-Horwath, 1991]

Given an ODE by the vector field A, the knowledge of a solvable structure for A is equivalent to the integrability by quadratures of the equation (locally).

- Define ω_j = det(A, X₁,..., X_{j-1}, −)/det(A, X₁,..., X_{j-1}, X_j), which are locally exact (same reasoning).
- Integrate and restring to hypersurfaces.

 \mathcal{C}^{∞} -symmetries and beyond

\mathcal{C}^{∞} -symmetries [Muriel and Romero, 2001]

 \mathcal{C}^{∞} -symmetries and beyond

\mathcal{C}^{∞} -symmetries [Muriel and Romero, 2001]

Can be used to compute solutions of ODEs with no Lie point symmetries by the same reduction procedure. \mathcal{C}^{∞} -symmetries and beyond

\mathcal{C}^{∞} -symmetries [Muriel and Romero, 2001]

- Can be used to compute solutions of ODEs with no Lie point symmetries by the same reduction procedure.
- Key property 1: $[Y, A] = \lambda Y + \alpha A$.

\mathcal{C}^{∞} -symmetries [Muriel and Romero, 2001]

- Can be used to compute solutions of ODEs with no Lie point symmetries by the same reduction procedure.
- Key property 1: $[Y, A] = \lambda Y + \alpha A$.
- Key property 2: there exists functions *f* such that *f* · *Y* is a (dynamical) symmetry.

\mathcal{C}^∞ -symmetries [Muriel and Romero, 2001]

- Can be used to compute solutions of ODEs with no Lie point symmetries by the same reduction procedure.
- Key property 1: $[Y, A] = \lambda Y + \alpha A$.
- Key property 2: there exists functions *f* such that *f* · *Y* is a (dynamical) symmetry.

Or, in other words, there exists a (dynamical) symmetry X such that $Y = \frac{1}{f}X$.

 \mathcal{C}^∞ -symmetries and beyond

 \mathcal{C}^∞ -symmetries and beyond

 \mathcal{C}^∞ -symmetries and beyond

 $\Box_{\mathcal{C}^{\infty}}$ -symmetries and beyond

In progress: \mathcal{C}^{∞} -symmetry of a distribution

 \mathcal{C}^{∞} -symmetries and beyond

In progress: \mathcal{C}^{∞} -symmetry of a distribution

 \mathcal{C}^{∞} -symmetries and beyond

In progress: solubility of *m*-th order equations

 $\cdot \mathcal{C}^{\infty}$ -symmetries and beyond

In progress: solubility of *m*-th order equations

• A "weaker" notion than solvable structure.

- A "weaker" notion than solvable structure.
- Ordered collection of completely integrable Pfaffian equations:

$$\omega_j = 0$$

- A "weaker" notion than solvable structure.
- Ordered collection of completely integrable Pfaffian equations:

$$\omega_j = 0$$

• Completely integrable: there exists μ_j and F_j such that

$$dF_j = \mu_j \cdot \omega_j$$

- A "weaker" notion than solvable structure.
- Ordered collection of completely integrable Pfaffian equations:

$$\omega_j = 0$$

• Completely integrable: there exists μ_i and F_i such that

$$dF_j = \mu_j \cdot \omega_j$$

• After *m* steps we arrive to the solution of the ODE.

- A "weaker" notion than solvable structure.
- Ordered collection of completely integrable Pfaffian equations:

$$\omega_j = 0$$

• Completely integrable: there exists μ_i and F_i such that

$$dF_j = \mu_j \cdot \omega_j$$

• After *m* steps we arrive to the solution of the ODE.

Bibliography

Bibliography

- Basarab-Horwath, P. (1991).
 Integrability by quadratures for systems of involutive vector fields.
 Ukrainian Math. Zh., 43:1330–1337.
- Lee, J. M. (2013). Introduction to Smooth Manifolds. New-York.
- Muriel, C. and Romero, J. L. (2001). New methods of reduction for ordinary differential equations. *IMA J. Appl. Math.*, 66(2):111–125.
- Olver, P. J. (1986).

Applications of Lie Groups to Differential Equations. New-York.