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Flow of vector fields

Fundamental theorem on flows

Given a vector field X on R”, then X has a unique maximal flow

X : UCR" = R"

Local group of transformations

Vector fields <= local groups of transformations.

ODE Existence, Uniqueness and Smoothness
)'<1(t) = V1(X1, .. ,Xn)

xp(t) = Vo(xa, ..., xn)

[Lee, 2013], [Olver, 1986]
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Lie ideas

Lie point symmetry

A local 1-parameter group W, is a Lie point symmetry if it
transforms solutions into solutions

Ml

RSO

G (W4(p)) = Ty(¢7 (p)) = [X, Al =0
62 (We(p)) # Wil (p)) = [X, Al =a - A
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Lie symmetries

First order equation

d
d{i = F(x, u(x)) «— —Fdx +du =0

From our point of view
i i ingle line from ion
Single line from a vector Single line from equations

3 x
r:{x-(3,5): A e R} ’5 u =—-5x+3u=0
Family of lines from a vector Family of lines from family of
. equations
field
1 d
A= 0x+ Fou=(1,F) ' E dz =—Fdx+du=0
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Lie symmetries

Integrating factor

w such that there exists G with dG = p(—Fdx + du)

Key result

If X is a Lie symmetry for A then

1
det(A, X)

is an integrating factor for —Fdx + du, or in other words,

Y det(A, —)
= det(A, X)

is exact (locally).
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Solvable structures

Higher order equations

Reduction method
1 Lie point symmetry = order reduction by 1

k Lie point symmetries = order reduction by k

m-th order equation with an m-dimensional solvable Lie
algebra = integrability by cuadratures

m The converse is not true ...

Solvable structures: [Basarab-Horwath, 1991

m Symmetries of involutive distributions instead of vector fields

m Given A, we aim to an ordered collection (Xj ..., Xk) such
that X; is symmetry of the "previous distribution”.
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Solvable structures

Main result

Basarab-Horwath, 1991

Given an ODE by the vector field A, the knowledge of a solvable
structure for A is equivalent to the integrability by quadratures of
the equation (locally).

Idea of the proof

det(A, X, ..., Xj_1,—)
det(A, X1, ..., Xj_1, X))
(same reasoning).

, Which are locally exact

m Define w; =

m Integrate and restring to hypersurfaces.



C>-symmetries [Muriel and Romero, 2001]



>>°-symmetries and beyond

C>-symmetries [Muriel and Romero, 2001]

m Can be used to compute solutions of ODEs with no Lie point
symmetries by the same reduction procedure.



2%°_symmetries and beyond

C>-symmetries [Muriel and Romero, 2001]

m Can be used to compute solutions of ODEs with no Lie point
symmetries by the same reduction procedure.

m Key property 1: [Y,A] = \Y + cA.



?° _symmetries and beyond

C>-symmetries [Muriel and Romero, 2001]

m Can be used to compute solutions of ODEs with no Lie point
symmetries by the same reduction procedure.

m Key property 1: [Y,A] = \Y + cA.

m Key property 2: there exists functions f such that - Y is a
(dynamical) symmetry.



?° _symmetries and beyond

C>-symmetries [Muriel and Romero, 2001]

m Can be used to compute solutions of ODEs with no Lie point
symmetries by the same reduction procedure.

m Key property 1: [Y,A] = \Y + cA.
m Key property 2: there exists functions f such that - Y is a
(dynamical) symmetry.

Or, in other words, there exists a (dynamical) symmetry X such
that Y = 1X.
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Visual idea

(X, Al=a-A The same reduction
_ procedure that with
VAl =AY +a-A Lie symmetries



In progress: C*°-symmetry of a distribution

PATH R

E_X'-Zil = E_«azd
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L%z])= 242 Lrag= 3t I«
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