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The concept of 2-local isometry

In the last decades considerable work has been done on

General question
Given a class C of transformation (like derivations,
automorphisms or isometries),

is C determined by its local actions?

In other words,

1 if φ : E → F is a linear map such that, for all u ∈ E, there
exists Tu ∈ C with φ(u) = Tu(u);

does φ belong to C?
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Definition (2-local isometry)
Let E,F be Banach spaces. A map ∆: E → F (no linearity
nor surjectivity are assumed) is called a 2-local isometry if
for every u, v ∈ E, there exists a surjective linear isometry
Tu,v : E → F such that

∆(u) = Tu,v(u), ∆(v) = Tu,v(v).

Every 2-local isometry ∆ preserves the distance between
points.

Question
Is ∆ linear and surjective?
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(1997) Šemrl introduced I 2-local automorphisms
2-local derivations

He proved I If H is an infinite-dimensional separable Hilbert
space, then every 2-local automorphism of the
C∗-algebra B(H) of all bounded linear opera-
tors on H is an automorphism.

Similar assertion holds concerning the 2-local
derivations.

Moises Villegas-Vallecillos University of Cadiz (Spain) 6 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

(1997) Šemrl introduced I 2-local automorphisms
2-local derivations

He proved I If H is an infinite-dimensional separable Hilbert
space, then every 2-local automorphism of the
C∗-algebra B(H) of all bounded linear opera-
tors on H is an automorphism.

Similar assertion holds concerning the 2-local
derivations.

Moises Villegas-Vallecillos University of Cadiz (Spain) 6 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

(2002) Molnár extended the notion of 2-locality to isometries

H
Definition of 2-local isometry

He proved I Every 2-local isometry on B(H) is a
surjective linear isometry.

He raised I To study 2-local isometries on functions
algebras.
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(2001)
Győry showed I If X is a first countable σ-compact

Hausdorff space, then every 2-local
isometry of C0(X ,C) is a surjective
linear isometry.

(2009)
Al-Halees and Fleming extended Győry’s result for 2-local
isometries between spaces of continuous vector-valued
functions.
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(2007)
Hatori, Miura, Oka and Takagi study 2-local isometries and
2-local automorphisms on uniform algebras (and, in
particular, for certain algebras of holomorphic functions).

O. Hatori T. Miura

(2020)
Hosseini described 2-local isometries on spaces of
functions of bounded variation.
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Lipschitz and pointed Lipschitz spaces

Lipschitz map
Let (X , dX ) and (Y , dY ) be metric spaces. A map f : X → Y is
said to be Lipschitz if there exists a constant C ≥ 0 such that

dY (f(x), f(p)) ≤ C dX (x, p) (x, p ∈ X).

In such case, the number

L(f) = sup
{

dY (f(x), f(p))

dX (x, p)
: x, p ∈ X , x , p

}
is called the Lipschitz constant of f .
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The Lipschitz space Lip(X)

Let X be a metric space. Lip(X) stands for the set of all
bounded Lipschitz functions f : X → K (where K denotes the
field of real or complex numbers), equipped with either the
maximum norm max

{
‖f‖∞, L(f)

}
or the sum norm ‖f‖∞+ L(f).

Lip(X) is a Banach space.
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A pointed metric space is a metric space X with a
distinguished element eX ∈ X called base point.

The pointed Lipschitz space Lip0(X)

Let X be a pointed metric space with base point eX . The
pointed Lipschitz space Lip0(X) is the Banach space of all
Lipschitz functions f : X → K for which f(eX ) = 0, endowed
with the Lipschitz norm L(f).
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The isometry group of Lip(X) is said to be canonical if every
surjective linear isometry T : Lip(X)→ Lip(X) can be
expressed as a weighted composition operator of the form

T(f) = λ · (f ◦ φ) (f ∈ Lip(X)),

where λ is an unimodular constant and φ is a surjective
isometry of X .

(2011)
Jiménez, Villegas I If X is bounded and separable

and the isometry group of Lip(X)
is canonical, then every 2-local
isometry of Lip(X) is a surjective
linear isometry.
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(2018)
Jiménez, Li, Peralta, Wang and Wang studied 2-local
isometries between spaces of vector-valued Lipschitz
functions.

(2019)
Li, Peralta, Wang and Wang established some spherical
variant of the Gleason–Kahane–Zelazko and
Kowalski–Słodkowski theorems that were used to describe
2-weak-local isometries on Lipschitz algebras and uniform
algebras.
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Recently, Oi has been extended the spherical variant of the
Kowalski–Słodkowski theorem and she has applied it to
prove that 2-local maps in the set of all surjective isometries
on several function spaces are surjective isometries.
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Surjective linear isometries on Lip0 spaces

Our problem
Is every 2-local isometry between Lip0 spaces linear and
surjective?

We first obtain a representation of the 2-local isometries
between Lip0 spaces by following:

The strategy of Győry on C0(X).
The technique employed by Győry and Molnár, and
Cabello Sánchez to describe the form of
diameter-preserving linear bijections of C(X).

Moises Villegas-Vallecillos University of Cadiz (Spain) 18 / 51
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Cabello Sánchez to describe the form of
diameter-preserving linear bijections of C(X).

Moises Villegas-Vallecillos University of Cadiz (Spain) 18 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

Györy used I The Banach-Stone theorem:
If X is a locally compact Hausdorff space and
T : C0(X)→ C0(X) is a surjective linear isometry, then there
exist a homeomorfism ϕ : X → X and a continuous function
τ : X → K with |τ(x)| = 1 for all x ∈ X such that

T(f) = τ · (f ◦ ϕ) (f ∈ C0(X)).

(1981)
Mayer-Wolf characterized the surjective linear isometries
from Lip0(X , dα

X ) onto Lip0(Y , dα
Y ) for α ∈ ]0, 1[.
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(1999) and (2018)
Weaver extended Mayer-Wolf’s result in his books
(Theorem 3.56 (2018), Theorem 2.7.3 (1999) and Theorem
3.39 (2018)).
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Weaver uses:

Concave and uniformly concave metric space
A metric space X is said to be

concave if
d(x, y) < d(x, z) + d(z, y)

for any triple of distinct points x, y, z ∈ X ;
uniformly concave if for every distinct points x, y ∈ X and
every ε > 0, there exists δ > 0 such that

d(x, y) ≤ d(x, z) + d(z, y) − δ

for all z ∈ X such that min
{
d(x, z), d(y, z)

}
≥ ε.
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Easy example of uniformly concave metric space
The unit circumference X = S(R2,‖·‖2) is uniformly concave.
Indeed, given x, y ∈ X and 0 < ε < 2, we can take
δ =

(
1 −

√
1 − ε2/4

)
d(x, y).

Then d(x, y) ≤ d(x, z) + d(z, y) − δ for all z ∈ X such that
min

{
d(x, z), d(y, z)

}
≥ ε.
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Weaver (2018) offers:

Examples of uniformly concave metric spaces
1 Any closed subset of Rn with the inherited Euclidean

norm in which no three points are colinear.
2 Any compact subset of a strictly convex Banach space

in which no three points are colinear.
3 The unit sphere of any uniformly convex Banach space.
4 Any metric space (X , ω ◦ d), where ω : (0,∞)→ (0,∞)

is a strictly concave distortion function. In particular, any
Hölder metric space (X , dα) with α ∈]0, 1[.

Moises Villegas-Vallecillos University of Cadiz (Spain) 23 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

Weaver (2018) offers:

Examples of uniformly concave metric spaces
1 Any closed subset of Rn with the inherited Euclidean

norm in which no three points are colinear.
2 Any compact subset of a strictly convex Banach space

in which no three points are colinear.
3 The unit sphere of any uniformly convex Banach space.
4 Any metric space (X , ω ◦ d), where ω : (0,∞)→ (0,∞)

is a strictly concave distortion function. In particular, any
Hölder metric space (X , dα) with α ∈]0, 1[.

Moises Villegas-Vallecillos University of Cadiz (Spain) 23 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

Weaver (2018) offers:

Examples of uniformly concave metric spaces
1 Any closed subset of Rn with the inherited Euclidean

norm in which no three points are colinear.
2 Any compact subset of a strictly convex Banach space

in which no three points are colinear.
3 The unit sphere of any uniformly convex Banach space.
4 Any metric space (X , ω ◦ d), where ω : (0,∞)→ (0,∞)

is a strictly concave distortion function. In particular, any
Hölder metric space (X , dα) with α ∈]0, 1[.

Moises Villegas-Vallecillos University of Cadiz (Spain) 23 / 51



The concept of 2-local isometry
Lipschitz and pointed Lipschitz spaces

Surjective linear isometries on Lip0 spaces
Representation of the 2-local isometries between Lip0 spaces

Main theorem

Weaver (2018) offers:

Examples of uniformly concave metric spaces
1 Any closed subset of Rn with the inherited Euclidean

norm in which no three points are colinear.
2 Any compact subset of a strictly convex Banach space

in which no three points are colinear.
3 The unit sphere of any uniformly convex Banach space.
4 Any metric space (X , ω ◦ d), where ω : (0,∞)→ (0,∞)

is a strictly concave distortion function. In particular, any
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Given two metric spaces (X , dX ) and (Y , dY ) and a number
a > 0, a map φ : Y → X is an a-dilation if
dX (φ(y1), φ(y2)) = a · dY (y1, y2) for all y1, y2 ∈ Y .

Theorem (Weaver)
Let X and Y be uniformly concave complete pointed metric
spaces. A linear operator T : Lip0(X)→ Lip0(Y) is a
surjective isometry if and only if there exists a number λ ∈ SK
and a surjective a-dilation φ : Y → X such that

T(f)(y) = λa−1 (f(φ(y)) − f(φ(eY )))

for all f ∈ Lip0(X) and y ∈ Y.
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Representation of the 2-local isometries
between Lip0 spaces

Another important tool: peaking functions of Lip0(X)

Let X be a concave pointed metric space and x, p∈X with x,p.
Consider the functions g(x,p), h(x,p) : X → R defined by

g(x,p)(z) =
d(x, p) d(z, p)

d(z, x) + d(z, p)
, h(x,p)(z) = g(x,p)(z) − g(x,p)(eX )

for all z ∈ X . Then h(x,p) belongs to Lip0(X), and satisfies that

h(x,p)(x) − h(x,p)(p)

d(x, p)
= 1,

∣∣∣h(x,p)(z) − h(x,p)(w)
∣∣∣

d(z,w)
< 1

for all z,w ∈ X with z , w and {z,w} , {x, p}.
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Lemma (more peaking functions)
Let X be a concave pointed metric space, x, p ∈ X with x , p
and 0 < δ < d(x, p). Consider the functions g1, g2, g3 : X → R
defined by

g1(z) =
2d(x, p) − δ

2d(x, p)
max

{
0, d(x, p) − d(z, x)

}
−

δ

2d(x, p)
max

{
0, d(x, p) − d(z, p)

}
,

g2(z) = max
{

g1(z),−
1
2

max
{
0, δ − d(z, p)

}}
,

g3(z) = min
{

g2(z),
4d(x, p)−2δ
4d(x, p)−δ

max
{
0, d(x, p) −

δ

4
− d(z, x)

}}
.
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Lemma (more peaking functions (cont.))
Then

1 For each k ∈ {1, 2, 3}, the function gk is Lipschitz with

gk (x) − gk (p)

d(x, p)
= 1,

∣∣∣gk (z) − gk (w)
∣∣∣

d(z,w)
< 1

for all z,w ∈ X with z , w and {z,w} , {x, p}.
2 g3(z) = 0 if d(z, x) ≥ d(x, p) − δ/4 and d(z, p) ≥ δ,
3 g3(z) ≥ 0 if d(z, p) ≥ δ,
4 g3(z) ≥ −δ/2 for all z ∈ X .
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Lemma (more peaking functions (cont.))
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g3
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Theorem (representation of 2-local isometries)
Let X and Y be uniformly concave complete pointed metric
spaces and let ∆: Lip0(X)→ Lip0(Y) be a 2-local isometry.
Then there exist a subspace Y0 of Y which is isometric to Y,
a number λ ∈ SK and a surjective a-dilation φ : Y0 → X such
that

∆(f)(y1) −∆(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).
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Some steps of the proof
Step 1. We fix

X̃ =
{
(x1, x2) ∈ X × X : x1 , x2

}
,

S+
R = {1}, S+

C =
{
e it : t ∈ [0, π[

}
,

and, for each (x1, x2) ∈ X̃ and f ∈ Lip0(X), we consider the
set B(x1,x2),f formed by the pairs ((y1, y2), λ) ∈ Ỹ × SK such
that

∆(f)(y1) −∆(f)(y2)

dY (y1, y2)
= λ

f(x1) − f(x2)

dX (x1, x2)
,

and the set B(x1,x2) =
⋂

f∈Lip0(X)

B(x1,x2),f .

Then B(x1,x2) = B(x1,x2),h(x1 ,x2)
and

{
B(x1,x2) : (x1, x2) ∈ X̃

}
is a

family of nonempty subsets of Ỹ × SK.
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Some steps of the proof

Step 2. For every (x1, x2) ∈ X̃ , there exist (y1, y2) ∈ Ỹ and
λ ∈ S+

K such that
B(x1,x2) =

{
((y1, y2), λ), ((y2, y1),−λ)

}
.

Step 3. We define the map Γ: X̃ → Ỹ in the following way:

for every (x1, x2) ∈ X̃ , Γ(x1, x2) is the unique element of Ỹ for
which there exists λ ∈ S+

K with (Γ(x1, x2), λ) ∈ B(x1,x2).

We have
If (y1, y2) = Γ(x1, x2), then (y2, y1) = Γ(x2, x1).
Γ is injective.
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λ ∈ S+

K such that
B(x1,x2) =

{
((y1, y2), λ), ((y2, y1),−λ)

}
.

Step 3. We define the map Γ: X̃ → Ỹ in the following way:
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Some steps of the proof

Step 4. We define:

Y0 =
{
y ∈ Y : (y, y2) ∈ Γ

(
X̃
)

for some y2 ∈ Y
}
,

and for each y ∈ Y0,

X1
y =

{
x1 ∈ X : ∃ x2∈X\{x1}, y2∈Y\{y} with Γ(x1, x2) = (y, y2)

}
,

X2
y =

{
x2 ∈ X : ∃ x1∈X\{x2}, y2∈Y\{y} with Γ(x1, x2) = (y, y2)

}
.

Then, for every y ∈ Y0, either X1
y is a singleton or X2

y is a
singleton.
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Some steps of the proof

Step 5. Let φ : Y0 → X be the map defined, for each y ∈ Y0,
by

φ(y) =


x1 if X1

y = {x1},

x2 if X2
y = {x2} and X1

y is not a singleton.

Then φ is bijective and, for all (y1, y2) ∈ Γ
(
X̃
)
, either

Γ (φ(y1), φ(y2)) = (y1, y2) or Γ (φ(y1), φ(y2)) = (y2, y1).
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Some steps of the proof

Step 6.
There exist numbers a > 0 and λ ∈ SK such that φ : Y0 → X
is an a-dilation and

∆(f)(y1) −∆(f)(y2) = λa−1 (f(φ(y1)) − f(φ(y2)))

for all y1, y2 ∈ Y0 and f ∈ Lip0(X).

Step 7. Y0 is isometric to Y .
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The previous theorem can be reformulated as follows.

Corollary
Let X and Y be uniformly concave complete pointed metric
spaces and let ∆: Lip0(X)→ Lip0(Y) be a 2-local isometry.
Then there exist a subspace Y0 of Y which is isometric to Y,
a surjective a-dilation φ : Y0 → X, a number λ ∈ SK and a
homogeneous Lipschitz function µ : Lip0(X)→ K such that

∆(f)(y) = λa−1f(φ(y)) + µ(f)

for all y ∈ Y0 and f ∈ Lip0(X).

µ can be defined by
µ(f) = ∆(f)

(
φ−1(eX )

)
(f ∈ Lip0(X)).
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For a suitable choice of basepoint in Y0, eY0 := φ−1(eX ), we
can see that the 2-local isometry ∆ induces a surjective
linear isometry.

Corollary
Let X and Y be uniformly concave complete pointed metric
spaces and let ∆: Lip0(X)→ Lip0(Y) be a 2-local isometry.
Then there exist an uniformly concave complete pointed
metric space Y0 such that if R : Lip0(Y)→ Lip0(Y0) is the
restriction map given by R(f) = f |Y0

for all f ∈ Lip0(Y), then
R ◦∆: Lip0(X)→ Lip0(Y0) is a surjective linear isometry.
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Main theorem
Lemma
Let X be a concave metric space and let x1, x2, x3 ∈ X be three
distinct points such that d(x1, x2) = d(x1, x3). Given
δ ∈]0, d(x1, x2)[, assume that the set

C =
{
z ∈ X : d(z, x1) ≥ d(x1, x2), d(z, x2) ≥ 3δ, d(z, x3) ≥ 3δ

}
contains a countable subset {rn : n∈N} of pairwise distinct points.
Then there exist two Lipschitz functions f , g : X → R satisfying:

i) (f(x1) − f(x2))/d(x1, x2) = 1 = (g(x1) − g(x3))/d(x1, x3),

ii)
∣∣∣f(z) − f(w)

∣∣∣ /d(z,w) < 1
(
(z,w) ∈ X̃ \ {(x1, x2), (x2, x1)}

)
,

iii)
∣∣∣g(z) − g(w)

∣∣∣ /d(z,w) < 1
(
(z,w) ∈ X̃ \ {(x1, x3), (x3, x1)}

)
,

iv)
{
x ∈ C : (f(x), g(x)) = (f(rn), g(rn))

}
= {rn} for each n ∈ N.
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Lemma
Let X and Y be uniformly concave complete pointed metric
spaces and let ∆: Lip0(X)→ Lip0(Y) be a 2-local isometry. Let
Y0 ⊆ Y be as in representation theorem and assume |Y0| ≥ 3.
If Y0 , Y , y ∈ Y \ Y0 and y1 ∈ Y0, then there exists a sequence
{zn} of points in Y0 such that

dY (zn, y1) = dY (y, y1) (n ∈ N),

dY (zn, zm) ≥ dY (y,Y0) > 0 (n,m ∈ N, n , m).
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Main theorem
Let X and Y be uniformly concave complete pointed metric
spaces and let ∆: Lip0(X)→ Lip0(Y) be a 2-local isometry.
Assume that X is also separable.
Then Y0 = Y and ∆ is a surjective linear isometry from
Lip0(X) onto Lip0(Y).
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