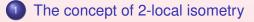
2-iso-reflexivity of pointed Lipschitz spaces

Moisés Villegas Vallecillos

Collaborating with A. Jiménez Vargas

Index



- 2 Lipschitz and pointed Lipschitz spaces
- 3 Surjective linear isometries on Lip₀ spaces
- Representation of the 2-local isometries between Lip₀ spaces

Main theorem

The concept of 2-local isometry

In the last decades considerable work has been done on

General question

Given a class *C* of transformation (like derivations, automorphisms or isometries),

is C determined by its local actions?

In other words,

if $\phi: E \to F$ is a linear map such that, for all $u \in E$, there exists $T_u \in C$ with $\phi(u) = T_u(u)$;

does ϕ belong to C?

The concept of 2-local isometry

In the last decades considerable work has been done on

General question

Given a class *C* of transformation (like derivations, automorphisms or isometries),

is C determined by its local actions?

In other words,

• if $\phi: E \to F$ is a linear map such that, for all $u \in E$, there exists $T_u \in C$ with $\phi(u) = T_u(u)$;

does ϕ belong to C?

The concept of 2-local isometry

In the last decades considerable work has been done on

General question

Given a class *C* of transformation (like derivations, automorphisms or isometries),

is C determined by its local actions?

In other words,

if $\Delta : E \to F$ is a map such that, for all $u, v \in E$, there exists $T_{u,v} \in C$ with $\Delta(u) = T_{u,v}(u)$ and $\Delta(v) = T_{u,v}(v)$:

does Δ belong to C?

The concept of 2-local isometry

In the last decades considerable work has been done on

General question

Given a class C of transformation (like derivations, automorphisms or isometries),

is C determined by its local actions?

In other words,

② if Δ : *E* → *F* is a map such that, for all $u, v \in E$, there exists $T_{u,v} \in C$ with $\Delta(u) = T_{u,v}(u)$ and $\Delta(v) = T_{u,v}(v)$;

does Δ belong to C?

Definition (2-local isometry)

Let E, F be Banach spaces. A map $\Delta : E \to F$ (no linearity nor surjectivity are assumed) is called a 2-local isometry if for every u, $v \in E$, there exists a surjective linear isometry $T_{u,v}: E \to F$ such that

$$\Delta(u) = T_{u,v}(u), \qquad \Delta(v) = T_{u,v}(v).$$

Every 2-local isometry Δ preserves the distance between points.

Question Is Δ linear and surjective

Definition (2-local isometry)

Let E, F be Banach spaces. A map $\Delta : E \to F$ (no linearity nor surjectivity are assumed) is called a 2-local isometry if for every u, $v \in E$, there exists a surjective linear isometry $T_{u,v}: E \to F$ such that

$$\Delta(u) = T_{u,v}(u), \qquad \Delta(v) = T_{u,v}(v).$$

Every 2-local isometry Δ preserves the distance between points.

Question

Is Δ linear and surjective?

(1997) Šemrl introduced -

2-local automorphisms 2-local derivations

He proved \longrightarrow If *H* is an infinite-dimensional separable Hilbert space, then every 2-local automorphism of the *C**-algebra *B*(*H*) of all bounded linear operators on *H* is an automorphism.

Similar assertion holds concerning the 2-local derivations.

(1997) Šemrl introduced -

2-local automorphisms 2-local derivations

He proved \longrightarrow If *H* is an infinite-dimensional separable Hilbert space, then every 2-local automorphism of the *C**-algebra *B*(*H*) of all bounded linear operators on *H* is an automorphism.

Similar assertion holds concerning the 2-local derivations.

(2002) Molnár extended the notion of 2-locality to isometries

Definition of 2-local isometry

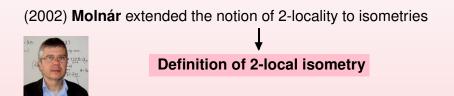
He proved \longrightarrow Every 2-local isometry on B(H) is a surjective linear isometry.

(2002) Molnár extended the notion of 2-locality to isometries Definition of 2-local isometry

He proved \longrightarrow Every 2-local isometry on B(H) is a surjective linear isometry.

(2002) Molnár extended the notion of 2-locality to isometries Definition of 2-local isometry

He proved \rightarrow Every 2-local isometry on B(H) is a surjective linear isometry.



He proved \rightarrow Every 2-local isometry on B(H) is a surjective linear isometry.

He raised — To study 2-local isometries on functions algebras.

(2001) **Győry** showed \longrightarrow If X is a first countable σ -compact Hausdorff space, then every 2-local isometry of $C_0(X, \mathbb{C})$ is a surjective linear isometry.

(2009) **AI-Halees** and **Fleming** extended Győry's result for 2-local isometries between spaces of continuous vector-valued functions.

(2001) **Győry** showed \longrightarrow If X is a first countable σ -compact Hausdorff space, then every 2-local isometry of $C_0(X, \mathbb{C})$ is a surjective linear isometry.

(2009) **AI-Halees** and **Fleming** extended Győry's result for 2-local isometries between spaces of continuous vector-valued functions.

(2007) **Hatori**, **Miura**, **Oka** and **Takagi** study 2-local isometries and 2-local automorphisms on uniform algebras (and, in particular, for certain algebras of holomorphic functions).

O. Hatori

T. Miura

(2020) **Hosseini** described 2-local isometries on spaces of functions of bounded variation. $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz and pointed Lipschitz spaces} \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

- The concept of 2-local isometry
- 2 Lipschitz and pointed Lipschitz spaces
- 3 Surjective linear isometries on Lip₀ spaces
- Representation of the 2-local isometries between Lip₀ spaces

5 Main theorem

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

Lipschitz and pointed Lipschitz spaces

Lipschitz map

Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f : X \to Y$ is said to be Lipschitz if there exists a constant $C \ge 0$ such that

$$d_Y(f(x), f(p)) \leq C d_X(x, p) \qquad (x, p \in X).$$

In such case, the number

$$L(f) = \sup\left\{\frac{d_Y(f(x), f(p))}{d_X(x, p)} : x, p \in X, x \neq p\right\}$$

is called the Lipschitz constant of f.

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

Lipschitz and pointed Lipschitz spaces

Lipschitz map

Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f : X \to Y$ is said to be Lipschitz if there exists a constant $C \ge 0$ such that

$$d_Y(f(x), f(p)) \leq C d_X(x, p) \qquad (x, p \in X).$$

In such case, the number

$$L(f) = \sup\left\{\frac{d_Y(f(x), f(p))}{d_X(x, p)} : x, p \in X, x \neq p\right\}$$

is called the Lipschitz constant of f.

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz and pointed Lipschitz spaces} \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

The Lipschitz space Lip(X)

Let X be a metric space. Lip(X) stands for the set of all bounded Lipschitz functions $f: X \to \mathbb{K}$ (where \mathbb{K} denotes the field of real or complex numbers), equipped with either the maximum norm max { $||f||_{\infty}, L(f)$ } or the sum norm $||f||_{\infty} + L(f)$.

Lip(X) is a Banach space.

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz and pointed Lipschitz spaces} \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

The Lipschitz space Lip(X)

Let X be a metric space. Lip(X) stands for the set of all bounded Lipschitz functions $f: X \to \mathbb{K}$ (where \mathbb{K} denotes the field of real or complex numbers), equipped with either the maximum norm max { $||f||_{\infty}, L(f)$ } or the sum norm $||f||_{\infty} + L(f)$.

• Lip(X) is a Banach space.

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

A pointed metric space is a metric space X with a distinguished element $e_X \in X$ called base point.

The pointed Lipschitz space $Lip_0(X)$

Let X be a pointed metric space with base point e_X . The pointed Lipschitz space $\operatorname{Lip}_0(X)$ is the Banach space of all Lipschitz functions $f : X \to \mathbb{K}$ for which $f(e_X) = 0$, endowed with the Lipschitz norm L(f).

 $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem} \end{cases}$

The isometry group of $\operatorname{Lip}(X)$ is said to be canonical if every surjective linear isometry $T : \operatorname{Lip}(X) \to \operatorname{Lip}(X)$ can be expressed as a weighted composition operator of the form

$$T(f) = \lambda \cdot (f \circ \phi)$$
 $(f \in \operatorname{Lip}(X)),$

where λ is an unimodular constant and ϕ is a surjective isometry of *X*.

(2011) Jiménez, Villegas →

If X is bounded and separable and the isometry group of Lip(X)is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry. $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem}$

(2018) Jiménez, Li, Peralta, Wang and Wang studied 2-local isometries between spaces of vector-valued Lipschitz functions.

(2019)

Li, Peralta, Wang and Wang established some spherical variant of the Gleason–Kahane–Zelazko and Kowalski–Słodkowski theorems that were used to describe 2-weak-local isometries on Lipschitz algebras and uniform algebras. $\label{eq:constraint} The concept of 2-local isometry \\ \mbox{Lipschitz} and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \mbox{Main theorem}$

(2018) Jiménez, Li, Peralta, Wang and Wang studied 2-local isometries between spaces of vector-valued Lipschitz functions.

(2019)

Li, Peralta, Wang and Wang established some spherical variant of the Gleason–Kahane–Zelazko and Kowalski–Słodkowski theorems that were used to describe 2-weak-local isometries on Lipschitz algebras and uniform algebras.

 $\label{eq:constraint} The \ concept \ of \ 2-local \ isometry \ Lipschitz \ spaces \ Surjective \ linear \ isometries \ on \ Lip_0 \ spaces \ Representation \ of \ the \ 2-local \ isometries \ between \ Lip_0 \ spaces \ Main \ theorem$

Recently, **Oi** has been extended the spherical variant of the Kowalski–Słodkowski theorem and she has applied it to prove that 2-local maps in the set of all surjective isometries on several function spaces are surjective isometries.

- 1) The concept of 2-local isometry
- 2 Lipschitz and pointed Lipschitz spaces
- 3 Surjective linear isometries on Lip₀ spaces
- Representation of the 2-local isometries between Lip₀ spaces

5 Main theorem

Surjective linear isometries on Lipo spaces

Our problem

Is every 2-local isometry between Lip_{0} spaces linear and surjective?

We first obtain a representation of the 2-local isometries between Lip_0 spaces by following:

- The strategy of Győry on C₀(X).
- The technique employed by Győry and Molnár, and Cabello Sánchez to describe the form of diameter-preserving linear bijections of C(X).

Main theorem

Surjective linear isometries on Lip_0 spaces

Our problem

Is every 2-local isometry between Lip_{0} spaces linear and surjective?

We first obtain a representation of the 2-local isometries between Lip_0 spaces by following:

- The strategy of Győry on $C_0(X)$.
- The technique employed by Győry and Molnár, and Cabello Sánchez to describe the form of diameter-preserving linear bijections of C(X).

Main theorem

Surjective linear isometries on Lip_0 spaces

Our problem

Is every 2-local isometry between $\operatorname{Lip}_{\mathbf{0}}$ spaces linear and surjective?

We first obtain a representation of the 2-local isometries between Lip_0 spaces by following:

- The strategy of Győry on $C_0(X)$.
- The technique employed by Győry and Molnár, and Cabello Sánchez to describe the form of diameter-preserving linear bijections of C(X).

Györy used — The Banach-Stone theorem:

If X is a locally compact Hausdorff space and $T: C_0(X) \to C_0(X)$ is a surjective linear isometry, then there exist a homeomorfism $\varphi: X \to X$ and a continuous function $\tau: X \to \mathbb{K}$ with $|\tau(x)| = 1$ for all $x \in X$ such that $T(f) = \tau \cdot (f \circ \varphi) \qquad (f \in C_0(X)).$

(1981)

Mayer-Wolf characterized the surjective linear isometries from $\operatorname{Lip}_0(X, d_X^{\alpha})$ onto $\operatorname{Lip}_0(Y, d_Y^{\alpha})$ for $\alpha \in]0, 1[$.

Györy used — The Banach-Stone theorem:

If X is a locally compact Hausdorff space and $T: C_0(X) \to C_0(X)$ is a surjective linear isometry, then there exist a homeomorfism $\varphi: X \to X$ and a continuous function $\tau: X \to \mathbb{K}$ with $|\tau(x)| = 1$ for all $x \in X$ such that $T(f) = \tau \cdot (f \circ \varphi) \qquad (f \in C_0(X)).$

(1981)

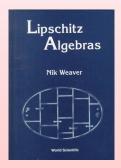
Mayer-Wolf characterized the surjective linear isometries from $\operatorname{Lip}_0(X, d_X^{\alpha})$ onto $\operatorname{Lip}_0(Y, d_Y^{\alpha})$ for $\alpha \in]0, 1[$.

Györy used — The Banach-Stone theorem:

If X is a locally compact Hausdorff space and $T: C_0(X) \to C_0(X)$ is a surjective linear isometry, then there exist a homeomorfism $\varphi: X \to X$ and a continuous function $\tau: X \to \mathbb{K}$ with $|\tau(x)| = 1$ for all $x \in X$ such that $T(f) = \tau \cdot (f \circ \varphi) \qquad (f \in C_0(X)).$

(1981) Mayer-Wolf characterized the surjective linear isometries from $\operatorname{Lip}_0(X, d_X^{\alpha})$ onto $\operatorname{Lip}_0(Y, d_Y^{\alpha})$ for $\alpha \in]0, 1[$.

(1999) and (2018) Weaver extended Mayer-Wolf's result in his books (Theorem 3.56 (2018), Theorem 2.7.3 (1999) and Theorem 3.39 (2018)).



 $\label{eq:constraint} The concept of 2-local isometry \\ Lipschitz and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ \end{array}$

Weaver uses:

Concave and uniformly concave metric space

A metric space X is said to be

• concave if

$$d(x,y) < d(x,z) + d(z,y)$$

for any triple of distinct points $x, y, z \in X$;

 uniformly concave if for every distinct points x, y ∈ X and every ε > 0, there exists δ > 0 such that

$$d(x,y) \le d(x,z) + d(z,y) - \delta$$

for all $z \in X$ such that min $\{d(x, z), d(y, z)\} \ge \varepsilon$.

 $\label{eq:constraint} The concept of 2-local isometry \\ Lipschitz and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ Main theorem \\ Representation Repres$

Weaver uses:

Concave and uniformly concave metric space

A metric space X is said to be

• concave if

$$d(x,y) < d(x,z) + d(z,y)$$

for any triple of distinct points $x, y, z \in X$;

 uniformly concave if for every distinct points x, y ∈ X and every ε > 0, there exists δ > 0 such that

$$d(x,y) \le d(x,z) + d(z,y) - \delta$$

for all $z \in X$ such that min $\{d(x, z), d(y, z)\} \ge \varepsilon$.

 $\label{eq:constraint} The concept of 2-local isometry \\ Lipschitz and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ Main theorem \\ Representation Repres$

Weaver uses:

Concave and uniformly concave metric space

A metric space X is said to be

• concave if

$$d(x,y) < d(x,z) + d(z,y)$$

for any triple of distinct points $x, y, z \in X$;

 uniformly concave if for every distinct points x, y ∈ X and every ε > 0, there exists δ > 0 such that

$$d(x,y) \leq d(x,z) + d(z,y) - \delta$$

for all $z \in X$ such that min $\{d(x, z), d(y, z)\} \ge \varepsilon$.

Main theorem

Easy example of uniformly concave metric space

The unit circumference $X = S_{(\mathbb{R}^2, \|\cdot\|_2)}$ is uniformly concave. Indeed, given $x, y \in X$ and $0 < \varepsilon < 2$, we can take $\delta = (1 - \sqrt{1 - \varepsilon^2/4}) d(x, y).$

Then $d(x, y) \le d(x, z) + d(z, y) - \delta$ for all $z \in X$ such that $\min \{d(x, z), d(y, z)\} \ge \varepsilon$.

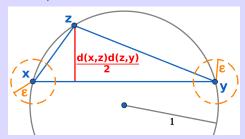
Moises Villegas-Vallecillos

University of Cadiz (Spain)

Main theorem

Easy example of uniformly concave metric space

The unit circumference $X = S_{(\mathbb{R}^2, \|\cdot\|_2)}$ is uniformly concave. Indeed, given $x, y \in X$ and $0 < \varepsilon < 2$, we can take $\delta = (1 - \sqrt{1 - \varepsilon^2/4}) d(x, y).$

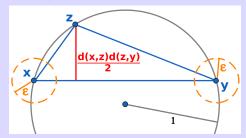


Then $d(x, y) \le d(x, z) + d(z, y) - \delta$ for all $z \in X$ such that $\min \{d(x, z), d(y, z)\} \ge \varepsilon$.

Main theorem

Easy example of uniformly concave metric space

The unit circumference $X = S_{(\mathbb{R}^2, \|\cdot\|_2)}$ is uniformly concave. Indeed, given $x, y \in X$ and $0 < \varepsilon < 2$, we can take $\delta = (1 - \sqrt{1 - \varepsilon^2/4}) d(x, y).$



Then $d(x, y) \le d(x, z) + d(z, y) - \delta$ for all $z \in X$ such that $\min \{d(x, z), d(y, z)\} \ge \varepsilon$.

Weaver (2018) offers:

- Any closed subset of \mathbb{R}^n with the inherited Euclidean norm in which no three points are colinear.
- Any compact subset of a strictly convex Banach space in which no three points are colinear.
- The unit sphere of any uniformly convex Banach space.
- Any metric space (X, ω ∘ d), where ω: (0, ∞) → (0, ∞) is a strictly concave distortion function. In particular, any Hölder metric space (X, d^α) with α ∈]0, 1[.

Weaver (2018) offers:

- Any closed subset of \mathbb{R}^n with the inherited Euclidean norm in which no three points are collinear.
- Any compact subset of a strictly convex Banach space in which no three points are colinear.
- Interpretation of any uniformly convex Banach space.
- Any metric space (X, ω ∘ d), where ω: (0, ∞) → (0, ∞) is a strictly concave distortion function. In particular, any Hölder metric space (X, d^α) with α ∈]0, 1[.

Weaver (2018) offers:

- Any closed subset of \mathbb{R}^n with the inherited Euclidean norm in which no three points are collinear.
- Any compact subset of a strictly convex Banach space in which no three points are colinear.
- The unit sphere of any uniformly convex Banach space.
- Any metric space (X, ω ∘ d), where ω: (0, ∞) → (0, ∞) is a strictly concave distortion function. In particular, any Hölder metric space (X, d^α) with α ∈]0, 1[.

Weaver (2018) offers:

- Any closed subset of \mathbb{R}^n with the inherited Euclidean norm in which no three points are collinear.
- Any compact subset of a strictly convex Banach space in which no three points are colinear.
- The unit sphere of any uniformly convex Banach space.
- Any metric space (X, ω ∘ d), where ω: (0, ∞) → (0, ∞) is a strictly concave distortion function. In particular, any Hölder metric space (X, d^α) with α ∈]0, 1[.

Weaver (2018) offers:

- Any closed subset of \mathbb{R}^n with the inherited Euclidean norm in which no three points are collinear.
- Any compact subset of a strictly convex Banach space in which no three points are colinear.
- The unit sphere of any uniformly convex Banach space.
- Any metric space $(X, ω \circ d)$, where $ω: (0, ∞) \to (0, ∞)$ is a strictly concave distortion function. In particular, any Hölder metric space (X, d^α) with $α \in]0, 1[$.

 $\label{eq:constraint} The concept of 2-local isometry \\ Lipschitz and pointed Lipschitz spaces \\ Surjective linear isometries on Lip_0 spaces \\ Representation of the 2-local isometries between Lip_0 spaces \\ Main theorem \\ Main theorem \\ Representation Repres$

Given two metric spaces (X, d_X) and (Y, d_Y) and a number a > 0, a map $\phi \colon Y \to X$ is an *a*-dilation if $d_X(\phi(y_1), \phi(y_2)) = a \cdot d_Y(y_1, y_2)$ for all $y_1, y_2 \in Y$.

Theorem (Weaver)

Let X and Y be uniformly concave complete pointed metric spaces. A linear operator $T : \operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ is a surjective isometry if and only if there exists a number $\lambda \in S_{\mathbb{K}}$ and a surjective a-dilation $\phi : Y \to X$ such that

$$T(f)(y) = \lambda a^{-1} \left(f(\phi(y)) - f(\phi(e_Y)) \right)$$

for all $f \in \operatorname{Lip}_0(X)$ and $y \in Y$.

- The concept of 2-local isometry
- 2 Lipschitz and pointed Lipschitz spaces
- 3 Surjective linear isometries on Lip₀ spaces

Representation of the 2-local isometries between Lip₀ spaces

5 Main theorem

Representation of the 2-local isometries between Lip_0 spaces

Another important tool: peaking functions of $Lip_0(X)$

Let X be a concave pointed metric space and $x, p \in X$ with $x \neq p$. Consider the functions $g_{(x,p)}, h_{(x,p)} \colon X \to \mathbb{R}$ defined by

$$g_{(x,p)}(z) = rac{d(x,p) d(z,p)}{d(z,x) + d(z,p)}, \quad h_{(x,p)}(z) = g_{(x,p)}(z) - g_{(x,p)}(e_X)$$

for all $z \in X$. Then $h_{(x,p)}$ belongs to $\operatorname{Lip}_0(X)$, and satisfies that $\frac{h_{(x,p)}(x) - h_{(x,p)}(p)}{d(x,p)} = 1, \quad \frac{\left|h_{(x,p)}(z) - h_{(x,p)}(w)\right|}{d(z,w)} < 1$

for all $z, w \in X$ with $z \neq w$ and $\{z, w\} \neq \{x, p\}$.

Representation of the 2-local isometries between Lip_0 spaces

Another important tool: peaking functions of $Lip_0(X)$

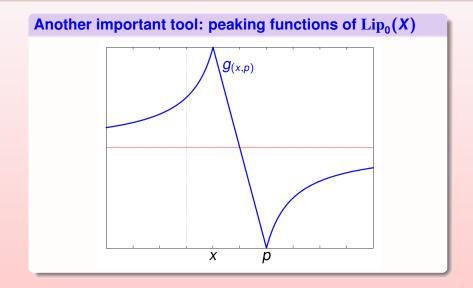
Let X be a concave pointed metric space and $x, p \in X$ with $x \neq p$. Consider the functions $g_{(x,p)}, h_{(x,p)} \colon X \to \mathbb{R}$ defined by

$$g_{(x,p)}(z) = rac{d(x,p) d(z,p)}{d(z,x) + d(z,p)}, \quad h_{(x,p)}(z) = g_{(x,p)}(z) - g_{(x,p)}(e_X)$$

for all $z \in X$. Then $h_{(x,p)}$ belongs to $\operatorname{Lip}_0(X)$, and satisfies that

$$\frac{h_{(x,p)}(x) - h_{(x,p)}(p)}{d(x,p)} = 1, \quad \frac{\left|h_{(x,p)}(z) - h_{(x,p)}(w)\right|}{d(z,w)} < 1$$

for all $z, w \in X$ with $z \neq w$ and $\{z, w\} \neq \{x, p\}$.



Moises Villegas-Vallecillos

University of Cadiz (Spain)

Lemma (more peaking functions)

Let X be a concave pointed metric space, $x, p \in X$ with $x \neq p$ and $0 < \delta < d(x, p)$. Consider the functions $g_1, g_2, g_3 \colon X \to \mathbb{R}$ defined by

$$g_{1}(z) = \frac{2d(x,p) - \delta}{2d(x,p)} \max \{0, d(x,p) - d(z,x)\} - \frac{\delta}{2d(x,p)} \max \{0, d(x,p) - d(z,p)\}, g_{2}(z) = \max \left\{g_{1}(z), -\frac{1}{2} \max \{0, \delta - d(z,p)\}\right\}, g_{3}(z) = \min \left\{g_{2}(z), \frac{4d(x,p) - 2\delta}{4d(x,p) - \delta} \max \left\{0, d(x,p) - \frac{\delta}{4} - d(z,x)\right\}\right\}.$$

 $\label{eq:constraint} The \ concept \ of \ 2-local \ isometry \\ Lipschitz \ and \ pointed \ Lipschitz \ spaces \\ Surjective \ linear \ isometries \ on \ Lip_0 \ spaces \\ \ Representation \ of \ the \ 2-local \ isometries \ between \ Lip_0 \ spaces \\ Main \ theorem \ Main \ Main \ theorem \ Main \ theorem \ Main \ Main \ theorem \ Main \ Main \ theorem \ Main \$

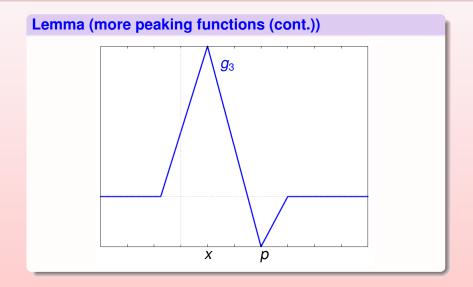
Lemma (more peaking functions (cont.))

Then

• For each $k \in \{1, 2, 3\}$, the function g_k is Lipschitz with $\frac{g_k(x) - g_k(p)}{d(x, p)} = 1, \qquad \frac{|g_k(z) - g_k(w)|}{d(z, w)} < 1$ for all $z, w \in X$ with $z \neq w$ and $\{z, w\} \neq \{x, p\}$. • $g_3(z) = 0$ if $d(z, x) \ge d(x, p) - \delta/4$ and $d(z, p) \ge \delta$, • $g_3(z) \ge 0$ if $d(z, p) \ge \delta$, • $g_3(z) \ge -\delta/2$ for all $z \in X$.

Lemma (more peaking functions (cont.))

Then



Moises Villegas-Vallecillos

University of Cadiz (Spain)

Theorem (representation of 2-local isometries)

Let X and Y be uniformly concave complete pointed metric spaces and let $\Delta : \operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Then there exist a subspace Y_0 of Y which is isometric to Y, a number $\lambda \in S_{\mathbb{K}}$ and a surjective a-dilation $\phi : Y_0 \to X$ such that

$$\Delta(f)(y_1) - \Delta(f)(y_2) = \lambda a^{-1} \left(f(\phi(y_1)) - f(\phi(y_2)) \right)$$

for all $y_1, y_2 \in Y_0$ and $f \in \operatorname{Lip}_0(X)$.

Some steps of the proof Step 1. We fix $\widetilde{X} = \{(x_1, x_2) \in X \times X : x_1 \neq x_2\},\$ $S_{\mathbb{R}}^+ = \{1\}, \quad S_{\mathbb{C}}^+ = \left\{e^{it} : t \in [0, \pi[\right\},\$

and, for each $(x_1, x_2) \in \widetilde{X}$ and $f \in \operatorname{Lip}_0(X)$, we consider the set $\mathcal{B}_{(x_1, x_2), f}$ formed by the pairs $((y_1, y_2), \lambda) \in \widetilde{Y} \times S_{\mathbb{K}}$ such that

$$\frac{\Delta(f)(y_1) - \Delta(f)(y_2)}{d_Y(y_1, y_2)} = \lambda \frac{f(x_1) - f(x_2)}{d_X(x_1, x_2)},$$

and the set $\mathscr{B}_{(x)}$

Then $\mathcal{B}_{(x_1,x_2)} = \mathcal{B}_{(x_1,x_2),h_{(x_1,x_2)}}$ and $\left\{ \mathcal{B}_{(x_1,x_2)} \colon (x_1,x_2) \in \widetilde{X} \right\}$ is a family of nonempty subsets of $\widetilde{Y} \times S_{\mathbb{K}}$.

and

Some steps of the proof Step 1. We fix $\widetilde{X} = \{(x_1, x_2) \in X \times X : x_1 \neq x_2\},\$ $S_{\mathbb{R}}^+ = \{1\}, \quad S_{\mathbb{C}}^+ = \left\{e^{it} : t \in [0, \pi[\right\},\$

and, for each $(x_1, x_2) \in \widetilde{X}$ and $f \in \operatorname{Lip}_0(X)$, we consider the set $\mathcal{B}_{(x_1, x_2), f}$ formed by the pairs $((y_1, y_2), \lambda) \in \widetilde{Y} \times S_{\mathbb{K}}$ such that

$$\frac{\Delta(f)(y_1) - \Delta(f)(y_2)}{d_Y(y_1, y_2)} = \lambda \frac{f(x_1) - f(x_2)}{d_X(x_1, x_2)},$$

the set $\mathcal{B}_{(x_1, x_2)} = \bigcap_{f \in \operatorname{Lip}_0(X)} \mathcal{B}_{(x_1, x_2), f}.$

Then $\mathcal{B}_{(x_1,x_2)} = \mathcal{B}_{(x_1,x_2),h_{(x_1,x_2)}}$ and $\{\mathcal{B}_{(x_1,x_2)} : (x_1,x_2) \in \widetilde{X}\}$ is a family of nonempty subsets of $\widetilde{Y} \times S_{\mathbb{K}}$.

Some steps of the proof Step 1. We fix $\widetilde{X} = \{(x_1, x_2) \in X \times X : x_1 \neq x_2\},\$ $S_{\mathbb{R}}^+ = \{1\}, \quad S_{\mathbb{C}}^+ = \{e^{it} : t \in [0, \pi[\},\$ and for each $(x_1, x_2) \in \widetilde{X}$ and $f \in I$ in (X) we conside

and, for each $(x_1, x_2) \in X$ and $f \in \operatorname{Lip}_0(X)$, we consider the set $\mathcal{B}_{(x_1, x_2), f}$ formed by the pairs $((y_1, y_2), \lambda) \in \widetilde{Y} \times S_{\mathbb{K}}$ such that

$$\frac{\Delta(f)(y_1) - \Delta(f)(y_2)}{d_Y(y_1, y_2)} = \lambda \frac{f(x_1) - f(x_2)}{d_X(x_1, x_2)},$$

and the set $\mathcal{B}_{(x_1,x_2)} = \bigcap_{f \in \operatorname{Lip}_n(X)} \mathcal{B}_{(x_1,x_2),f}.$

Then $\mathcal{B}_{(x_1,x_2)} = \mathcal{B}_{(x_1,x_2),h_{(x_1,x_2)}}$ and $\left\{ \mathcal{B}_{(x_1,x_2)} \colon (x_1,x_2) \in \widetilde{X} \right\}$ is a family of nonempty subsets of $\widetilde{Y} \times S_{\mathbb{K}}$.

Some steps of the proof

Step 2. For every $(x_1, x_2) \in \widetilde{X}$, there exist $(y_1, y_2) \in \widetilde{Y}$ and $\lambda \in S^+_{\mathbb{K}}$ such that

$$\mathcal{B}_{(x_1,x_2)} = \{((y_1,y_2),\lambda),((y_2,y_1),-\lambda)\}.$$

Step 3. We define the map $\Gamma: X \to Y$ in the following way: for every $(x_1, x_2) \in \widetilde{X}$, $\Gamma(x_1, x_2)$ is the unique element of \widetilde{Y} for which there exists $\lambda \in S_{\mathbb{K}}^+$ with $(\Gamma(x_1, x_2), \lambda) \in \mathcal{B}_{(x_1, x_2)}$.

We have

- If $(y_1, y_2) = \Gamma(x_1, x_2)$, then $(y_2, y_1) = \Gamma(x_2, x_1)$
- Γ is injective.

Some steps of the proof

Step 2. For every $(x_1, x_2) \in \widetilde{X}$, there exist $(y_1, y_2) \in \widetilde{Y}$ and $\lambda \in S_{\mathbb{K}}^+$ such that

$$\mathcal{B}_{(x_1,x_2)} = \{((y_1,y_2),\lambda),((y_2,y_1),-\lambda)\}.$$

Step 3. We define the map $\Gamma: \widetilde{X} \to \widetilde{Y}$ in the following way: for every $(x_1, x_2) \in \widetilde{X}$, $\Gamma(x_1, x_2)$ is the unique element of \widetilde{Y} for which there exists $\lambda \in S_{\mathbb{K}}^+$ with $(\Gamma(x_1, x_2), \lambda) \in \mathcal{B}_{(x_1, x_2)}$. We have

If (y₁, y₂) = Γ(x₁, x₂), then (y₂, y₁) = Γ(x₂, x₁).
Γ is injective.

Some steps of the proof

Step 2. For every $(x_1, x_2) \in \widetilde{X}$, there exist $(y_1, y_2) \in \widetilde{Y}$ and $\lambda \in S_{\mathbb{K}}^+$ such that

$$\mathcal{B}_{(x_1,x_2)} = \{((y_1,y_2),\lambda),((y_2,y_1),-\lambda)\}.$$

Step 3. We define the map $\Gamma: \widetilde{X} \to \widetilde{Y}$ in the following way: for every $(x_1, x_2) \in \widetilde{X}$, $\Gamma(x_1, x_2)$ is the unique element of \widetilde{Y} for which there exists $\lambda \in S^+_{\mathbb{K}}$ with $(\Gamma(x_1, x_2), \lambda) \in \mathcal{B}_{(x_1, x_2)}$.

We have

• If
$$(y_1, y_2) = \Gamma(x_1, x_2)$$
, then $(y_2, y_1) = \Gamma(x_2, x_1)$.

Γ is injective.

Some steps of the proof

Step 2. For every $(x_1, x_2) \in \widetilde{X}$, there exist $(y_1, y_2) \in \widetilde{Y}$ and $\lambda \in S_{\mathbb{K}}^+$ such that

$$\mathcal{B}_{(x_1,x_2)} = \{((y_1,y_2),\lambda),((y_2,y_1),-\lambda)\}.$$

Step 3. We define the map $\Gamma : \widetilde{X} \to \widetilde{Y}$ in the following way: for every $(x_1, x_2) \in \widetilde{X}$, $\Gamma(x_1, x_2)$ is the unique element of \widetilde{Y} for which there exists $\lambda \in S_{\mathbb{K}}^+$ with $(\Gamma(x_1, x_2), \lambda) \in \mathcal{B}_{(x_1, x_2)}$.

We have

• If
$$(y_1, y_2) = \Gamma(x_1, x_2)$$
, then $(y_2, y_1) = \Gamma(x_2, x_1)$.

Γ is injective.

Some steps of the proof

Step 4. We define:

$$\mathsf{Y}_0 = \left\{ y \in \mathsf{Y} \colon (y, y_2) \in \Gamma\left(\widetilde{X}
ight) ext{ for some } y_2 \in \mathsf{Y}
ight\},$$

and for each $y \in Y_0$,

 $X_{y}^{1} = \{x_{1} \in X : \exists x_{2} \in X \setminus \{x_{1}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\},\$

 $X_{y}^{2} = \{x_{2} \in X : \exists x_{1} \in X \setminus \{x_{2}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\}.$

Some steps of the proof

Step 4. We define:

$$Y_0 = \left\{ y \in Y \colon (y, y_2) \in \Gamma\left(\widetilde{X}
ight) ext{ for some } y_2 \in Y
ight\},$$

and for each $y \in Y_0$,

 $X_{y}^{1} = \{x_{1} \in X : \exists x_{2} \in X \setminus \{x_{1}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\},\$

 $X_{y}^{2} = \{x_{2} \in X : \exists x_{1} \in X \setminus \{x_{2}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\}.$

Some steps of the proof

Step 4. We define:

$$Y_0 = \left\{ y \in Y \colon (y, y_2) \in \Gamma\left(\widetilde{X}
ight) ext{ for some } y_2 \in Y
ight\},$$

and for each $y \in Y_0$,

$$X_{y}^{1} = \{x_{1} \in X : \exists x_{2} \in X \setminus \{x_{1}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\},\$$

 $X_y^2 = \{x_2 \in X : \exists x_1 \in X \setminus \{x_2\}, y_2 \in Y \setminus \{y\} \text{ with } \Gamma(x_1, x_2) = (y, y_2)\}.$

Some steps of the proof

Step 4. We define:

$$Y_0 = \left\{ y \in Y \colon (y, y_2) \in \Gamma\left(\widetilde{X}\right) \text{ for some } y_2 \in Y \right\},$$

and for each $y \in Y_0$,

$$X_{y}^{1} = \{x_{1} \in X : \exists x_{2} \in X \setminus \{x_{1}\}, y_{2} \in Y \setminus \{y\} \text{ with } \Gamma(x_{1}, x_{2}) = (y, y_{2})\},\$$

 $X_y^2 = \{x_2 \in X : \exists x_1 \in X \setminus \{x_2\}, y_2 \in Y \setminus \{y\} \text{ with } \Gamma(x_1, x_2) = (y, y_2)\}.$

Some steps of the proof

Step 5. Let $\phi : Y_0 \to X$ be the map defined, for each $y \in Y_0$, by

$$\phi(y) = \begin{cases} x_1 & \text{if } X_y^1 = \{x_1\}, \\ x_2 & \text{if } X_y^2 = \{x_2\} \text{ and } X_y^1 \text{ is not a singleton.} \end{cases}$$

Then ϕ is bijective and, for all $(y_1, y_2) \in \Gamma(\overline{X})$, either $\Gamma(\phi(y_1), \phi(y_2)) = (y_1, y_2)$ or $\Gamma(\phi(y_1), \phi(y_2)) = (y_2, y_1)$.

Some steps of the proof

Step 5. Let ϕ : $Y_0 \rightarrow X$ be the map defined, for each $y \in Y_0$, by

$$\phi(y) = \begin{cases} x_1 & \text{if } X_y^1 = \{x_1\}, \\ x_2 & \text{if } X_y^2 = \{x_2\} \text{ and } X_y^1 \text{ is not a singleton.} \end{cases}$$

Then ϕ is bijective and, for all $(y_1, y_2) \in \Gamma(\widetilde{X})$, either $\Gamma(\phi(y_1), \phi(y_2)) = (y_1, y_2)$ or $\Gamma(\phi(y_1), \phi(y_2)) = (y_2, y_1)$.

Some steps of the proof

Step 6.

There exist numbers a > 0 and $\lambda \in S_{\mathbb{K}}$ such that $\phi \colon Y_0 \to X$ is an *a*-dilation and

$$\Delta(f)(y_1) - \Delta(f)(y_2) = \lambda a^{-1} \left(f(\phi(y_1)) - f(\phi(y_2)) \right)$$

for all $y_1, y_2 \in Y_0$ and $f \in \operatorname{Lip}_0(X)$.

Step 7. Y_0 is isometric to *Y*.

The previous theorem can be reformulated as follows.

Corollary

Let X and Y be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Then there exist a subspace Y_0 of Y which is isometric to Y, a surjective a-dilation ϕ : $Y_0 \to X$, a number $\lambda \in S_{\mathbb{K}}$ and a homogeneous Lipschitz function μ : $\operatorname{Lip}_0(X) \to \mathbb{K}$ such that

 $\Delta(f)(y) = \lambda a^{-1} f(\phi(y)) + \mu(f)$

for all $y \in Y_0$ and $f \in \operatorname{Lip}_0(X)$.

 μ can be defined by

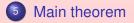
$$\mu(f) = \Delta(f) \left(\phi^{-1}(e_X) \right) \qquad (f \in \operatorname{Lip}_0(X)).$$

For a suitable choice of basepoint in Y_0 , $e_{Y_0} := \phi^{-1}(e_X)$, we can see that the 2-local isometry Δ induces a surjective linear isometry.

Corollary

Let X and Y be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Then there exist an uniformly concave complete pointed metric space Y_0 such that if R: $\operatorname{Lip}_0(Y) \to \operatorname{Lip}_0(Y_0)$ is the restriction map given by $R(f) = f|_{Y_0}$ for all $f \in \operatorname{Lip}_0(Y)$, then $R \circ \Delta$: $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y_0)$ is a surjective linear isometry.

- The concept of 2-local isometry
- 2 Lipschitz and pointed Lipschitz spaces
- 3 Surjective linear isometries on Lip₀ spaces
- Representation of the 2-local isometries between Lip₀ spaces



Main theorem

Lemma

Let *X* be a concave metric space and let $x_1, x_2, x_3 \in X$ be three distinct points such that $d(x_1, x_2) = d(x_1, x_3)$. Given $\delta \in]0, d(x_1, x_2)[$, assume that the set

 $C = \{z \in X : d(z, x_1) \ge d(x_1, x_2), \ d(z, x_2) \ge 3\delta, \ d(z, x_3) \ge 3\delta\}$

contains a countable subset $\{r_n : n \in \mathbb{N}\}$ of pairwise distinct points. Then there exist two Lipschitz functions $f, g : X \to \mathbb{R}$ satisfying:

i) $(f(x_1) - f(x_2))/d(x_1, x_2) = 1 = (g(x_1) - g(x_3))/d(x_1, x_3),$ ii) |f(z) - f(w)|/d(z, w) < 1 $((z, w) \in \widetilde{X} \setminus \{(x_1, x_2), (x_2, x_1)\}),$ iii) |g(z) - g(w)|/d(z, w) < 1 $((z, w) \in \widetilde{X} \setminus \{(x_1, x_3), (x_3, x_1)\}),$ iv) $\{x \in C : (f(x), g(x)) = (f(r_n), g(r_n))\} = \{r_n\}$ for each $n \in \mathbb{N}$.

Main theorem

Lemma

Let *X* be a concave metric space and let $x_1, x_2, x_3 \in X$ be three distinct points such that $d(x_1, x_2) = d(x_1, x_3)$. Given $\delta \in]0, d(x_1, x_2)[$, assume that the set

 $C = \{z \in X : d(z, x_1) \ge d(x_1, x_2), \ d(z, x_2) \ge 3\delta, \ d(z, x_3) \ge 3\delta\}$

contains a countable subset $\{r_n : n \in \mathbb{N}\}$ of pairwise distinct points. Then there exist two Lipschitz functions $f, g : X \to \mathbb{R}$ satisfying:

i) $(f(x_1) - f(x_2))/d(x_1, x_2) = 1 = (g(x_1) - g(x_3))/d(x_1, x_3),$

ii) |f(z) - f(w)| / d(z, w) < 1 $((z, w) \in X \setminus \{(x_1, x_2), (x_2, x_1)\}),$ iii) |g(z) - g(w)| / d(z, w) < 1 $((z, w) \in \widetilde{X} \setminus \{(x_1, x_3), (x_3, x_1)\}),$ iv) $\{x \in C : (f(x), g(x)) = (f(r_n), g(r_n))\} = \{r_n\}$ for each $n \in \mathbb{N}.$

Main theorem

Lemma

Let *X* be a concave metric space and let $x_1, x_2, x_3 \in X$ be three distinct points such that $d(x_1, x_2) = d(x_1, x_3)$. Given $\delta \in]0, d(x_1, x_2)[$, assume that the set

 $C = \{z \in X : d(z, x_1) \ge d(x_1, x_2), \ d(z, x_2) \ge 3\delta, \ d(z, x_3) \ge 3\delta\}$

contains a countable subset $\{r_n : n \in \mathbb{N}\}$ of pairwise distinct points. Then there exist two Lipschitz functions $f, g : X \to \mathbb{R}$ satisfying:

i) $(f(x_1) - f(x_2))/d(x_1, x_2) = 1 = (g(x_1) - g(x_3))/d(x_1, x_3),$

ii)
$$|f(z) - f(w)| / d(z, w) < 1$$
 $((z, w) \in \widetilde{X} \setminus \{(x_1, x_2), (x_2, x_1)\}),$

iii) |g(z) - g(w)| / d(z, w) < 1 $((z, w) \in \widetilde{X} \setminus \{(x_1, x_3), (x_3, x_1)\}),$ iv) $\{x \in C : (f(x), g(x)) = (f(r_n), g(r_n))\} = \{r_n\}$ for each $n \in \mathbb{N}$.

Main theorem

Lemma

Let *X* be a concave metric space and let $x_1, x_2, x_3 \in X$ be three distinct points such that $d(x_1, x_2) = d(x_1, x_3)$. Given $\delta \in]0, d(x_1, x_2)[$, assume that the set

$$C = \{z \in X : d(z, x_1) \ge d(x_1, x_2), \ d(z, x_2) \ge 3\delta, \ d(z, x_3) \ge 3\delta\}$$

contains a countable subset $\{r_n : n \in \mathbb{N}\}$ of pairwise distinct points. Then there exist two Lipschitz functions $f, g : X \to \mathbb{R}$ satisfying:

i)
$$(f(x_1) - f(x_2))/d(x_1, x_2) = 1 = (g(x_1) - g(x_3))/d(x_1, x_3),$$

ii) $|f(z) - f(w)|/d(z, w) < 1$ $((z, w) \in \widetilde{X} \setminus \{(x_1, x_2), (x_2, x_1)\}),$
iii) $|g(z) - g(w)|/d(z, w) < 1$ $((z, w) \in \widetilde{X} \setminus \{(x_1, x_3), (x_3, x_1)\}),$
iv) $\{x \in C : (f(x), g(x)) = (f(r_n), g(r_n))\} = \{r_n\}$ for each $n \in \mathbb{N}$.

Main theorem

Lemma

Let *X* be a concave metric space and let $x_1, x_2, x_3 \in X$ be three distinct points such that $d(x_1, x_2) = d(x_1, x_3)$. Given $\delta \in]0, d(x_1, x_2)[$, assume that the set

$$C = \{z \in X : d(z, x_1) \ge d(x_1, x_2), \ d(z, x_2) \ge 3\delta, \ d(z, x_3) \ge 3\delta\}$$

contains a countable subset $\{r_n : n \in \mathbb{N}\}$ of pairwise distinct points. Then there exist two Lipschitz functions $f, g : X \to \mathbb{R}$ satisfying:

i)
$$(f(x_1) - f(x_2))/d(x_1, x_2) = 1 = (g(x_1) - g(x_3))/d(x_1, x_3),$$

ii) $|f(z) - f(w)|/d(z, w) < 1$ $((z, w) \in \widetilde{X} \setminus \{(x_1, x_2), (x_2, x_1)\}),$
iii) $|g(z) - g(w)|/d(z, w) < 1$ $((z, w) \in \widetilde{X} \setminus \{(x_1, x_3), (x_3, x_1)\}),$
iv) $\{x \in C : (f(x), g(x)) = (f(r_n), g(r_n))\} = \{r_n\}$ for each $n \in \mathbb{N}$.

Lemma

Let *X* and *Y* be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Let $Y_0 \subseteq Y$ be as in *representation theorem* and assume $|Y_0| \ge 3$. If $Y_0 \ne Y, y \in Y \setminus Y_0$ and $y_1 \in Y_0$, then there exists a sequence $\{z_n\}$ of points in Y_0 such that

$$d_{\mathsf{Y}}(z_n, y_1) = d_{\mathsf{Y}}(y, y_1) \qquad (n \in \mathbb{N}),$$

 $d_{Y}(z_{n},z_{m})\geq d_{Y}(y,Y_{0})>0 \qquad (n,m\in\mathbb{N},\ n\neq m).$

Lemma

Let *X* and *Y* be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Let $Y_0 \subseteq Y$ be as in *representation theorem* and assume $|Y_0| \ge 3$. If $Y_0 \ne Y, y \in Y \setminus Y_0$ and $y_1 \in Y_0$, then there exists a sequence $\{z_n\}$ of points in Y_0 such that

$$d_{\mathsf{Y}}(z_n, y_1) = d_{\mathsf{Y}}(y, y_1) \qquad (n \in \mathbb{N}),$$

 $d_{Y}(z_{n},z_{m})\geq d_{Y}(y,Y_{0})>0 \qquad (n,m\in\mathbb{N},\ n\neq m).$

Lemma

Let *X* and *Y* be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Let $Y_0 \subseteq Y$ be as in *representation theorem* and assume $|Y_0| \ge 3$. If $Y_0 \neq Y$, $y \in Y \setminus Y_0$ and $y_1 \in Y_0$, then there exists a sequence $\{z_n\}$ of points in Y_0 such that

$$d_Y(z_n, y_1) = d_Y(y, y_1)$$
 $(n \in \mathbb{N}),$
 $d_Y(z_n, z_m) \ge d_Y(y, Y_0) > 0$ $(n, m \in \mathbb{N}, n \neq m).$

Main theorem

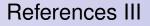
Let X and Y be uniformly concave complete pointed metric spaces and let Δ : $\operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y)$ be a 2-local isometry. Assume that X is also **separable**. Then $Y_0 = Y$ and Δ is a surjective linear isometry from $\operatorname{Lip}_0(X)$ onto $\operatorname{Lip}_0(Y)$.

References I

- H. Al-Halees and R. J. Fleming, On 2-local isometries on continuous vector-valued function spaces, J. Math. Anal. Appl. 354 (2009), 70–77.
- F. Cabello Sánchez, Diameter preserving linear maps and isometries, Arch. Math. (Basel) 73 (1999), 373–379.
- A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19, 171–172, (1967).
- M. Győry, 2-local isometries of C₀(X), Acta Sci. Math. (Szeged) 67 (2001), 735–746.

References II

- M. Győry and L. Molnár, Diameter preserving linear bijections of C(X), Arch. Math. (Basel) 71 (1998), 301–310.
- O. Hatori, T. Miura, H. Oka and H. Takagi, 2-local isometries and 2-local automorphisms on uniform algebras, Int. Math. Forum 50 (2007), 2491–2502.



 O. Hatori and S. Oi, 2-local isometries on function spaces, Recent trends in operator theory and applications, 89–106, Contemp. Math., 737, Amer. Math. Soc., Providence, RI, 2019.

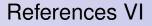
M. Hosseini, Generalized 2-local isometries of spaces of continuously differentiable functions, Quaest. Math. 40 (2017), no. 8, 1003–1014.

References IV

- A. Jiménez-Vargas, L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, 2-local standard isometries on vector-valued Lipschitz function spaces,
 - J. Math. Anal. Appl. 461 (2018), no. 2, 1287–1298.
- A. Jiménez-Vargas and M. Villegas-Vallecillos, 2-local isometries on spaces of Lipschitz functions, Canad. Math. Bull. 54 (2011), 680–692.
- A. Jiménez-Vargas and M. Villegas-Vallecillos, 2-iso-reflexivity of pointed Lipschitz spaces, J. Math. Anal. Appl. 491 (2020), no. 2, 124359.

References V

- J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29, 339–343 (1968).
- S. Kowalski and Z. Słodkowski, A characterization of multiplicative linear functionals in Banach algebras, Studia Math., 67 (1980), pp. 215–223.
- L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, Weak-2-local isometries on uniform algebras and Lipschitz algebras, Publ. Mat., 63, 1 (2019), 241–264.



- E. Mayer-Wolf, Isometries between Banach spaces of Lipschitz functions, Israel J. Math. 38 (1981), 58–74.
- L. Molnár, 2-local isometries of some operator algebras, Proc. Edinburgh Math. 45 (2002), 349–352.
- L. Molnár, Some characterizations of the automorphisms of B(H) and C(X),
 Proc. Amer. Math. Soc. 130, (2002), 111–120.

References VII

- S. Oi, A generalization of the Kowalski–Słodkowski theorem and its applications to 2-local maps on function spaces, preprint 2019. arXiv:1903.11424v3
- P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc. **125** (1997), 2677–2680.
- N. Weaver, Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

References VIII

N. Weaver, Lipschitz algebras. Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.

THANK YOU VERY MUCH!

Moises Villegas-Vallecillos University of Cadiz (Spain)