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Background

All vector spaces considered will be over the reals
Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F
verifies the extremal condition with respect to C:

x , y ∈ C
t ∈ (0,1)

tx + (1− t) y ∈ F
⇒ x , y ∈ F

A point c of C is said to be an extreme point of C if {c} is a
face of C. We will let ext (C) denote the set of extreme
points of C.
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The faceless problem

It is well known that closed convex subsets with non-empty
interior of Hausdorff locally convex topological vector spaces
have proper faces in virtue of the Hahn-Banach Theorem.

Problem (The faceless problem)

Characterize the non-singletons convex subsets free of proper
faces.

We will strongly rely on the concept of inner point.
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Inner structure

A point x of a non-singleton convex set C of a vector space
X is said to be an inner point of C if the inner condition
holds:

∀c ∈ C \ {x} ∃d ∈ C \ {x , c} s.t. x ∈ (c,d)

The set of inner points of C will be denoted by inn (C).
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A solution to the faceless problem

Theorem
Let X be a vector space. A non-singleton convex subset C of X
is free of proper faces if and only if C = inn(C).

One of the keys:

Remark
If x is an inner point of a convex set C, then [x , c) ⊆ inn(C) for
all c ∈ C.
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The hint

Lemma

Let X be a vector space. Let M be a convex subset of X . If C is
a convex subset of M and D is a face of M such that
inn (C) ∩ D 6= ∅, then C ⊆ D.

Remark
If C is a face of M, then C ⊆ M \ inn(M).
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A first approach

Theorem
Let X be a real vector space. Let M be a convex subset of X . If
F is a convex component of M \ inn(M), then F is a face of M.

Unfortunately, if inn(M) = ∅, then the previous theorem does
not solve the faceless problem because the only convex
component of M \ inn(M) is M.
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The construction

Definition

Let X be a vector space. Let M be a convex subset of X and
consider x ∈ M. We define the following sets:

F (x) :=
⋃
{S ⊂ M : S is a segment of M whose interior

contains x}.
C(x) :=

⋂
{S ⊂ M : S is a face of M containing x}.
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Theorem

Let X be a vector space. Let M be a convex subset of X and
consider x ∈ M.

1 F (x) = ∅ if and only if x ∈ ext(M).
2 F (x) = M if and only if x ∈ inn(M).
3 F (x) is convex if it is not empty.
4 F (x) is a face of M if it is not empty.
5 x /∈ ext(M) if and only if x ∈ inn(F (x)).
6 C(x) is the minimum face of M containing x.
7 F (x) = C(x) if and only if x /∈ ext(M).
8 x /∈ ext(M) if and only if x ∈ inn(C(x)).
9 If there exists a face C of M such that x ∈ inn(C), then

C = C(x) = F (x).
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The definite solution

Theorem

Let X be a vector space. A non-singleton convex subset C of X
is free of proper faces if and only if C = inn(C).
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A characterization of linear manifolds

Corollary

Let X be a topological vector space. Let M be a non-singleton
closed convex subset of X . The following conditions are
equivalent:

1 M has proper faces.
2 M is not a linear manifold.
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A characterization of strict convexity

Corollary
Let X be a normed space. The following conditions are
equivalent:

1 X is strictly convex.
2 inn(C) = ∅ for all proper faces C of BX .
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A characterization of strict convexity in
transitive spaces

A proper face C ⊆ SX of the unit ball BX of a Banach
space X is said to be invariant provided that the invariance
condition holds: If T ∈ GX is a surjective linear isometry on
X such that C ⊆ T (C), then C = T (C). Minimal and
maximal faces are examples of invariant faces.
A Banach space is called transitive if any two points of the
unit sphere can be taken one into another by means of a
surjective linear isometry.
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Minimal faces

Corollary

Let X be a vector space. Let M be a convex subset of X . Let D
be a minimal face of M. If D is not a singleton, then
D = inn (D).

Scholium

Let X be a topological vector space. Let M be a linearly
bounded closed convex subset of X .

1 If C is a face of M, then C \ inn(C) 6= ∅.
2 If C is a minimal face of M, then C is a singleton.

Every non-singleton linearly bounded closed convex subset of
a topological vector space has proper faces
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The Extreme Point Trichotomy

Corollary (The Extreme Point Trichotomy)

Let X be a vector space. Let M be a convex subset of X . Let
x ∈ M. There are only three disjoint possibilities for x:

1 x is an extreme point of M.
2 x is an inner point of M.
3 x is an inner point of a proper face of M.
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Another problem of similar nature

Problem
Characterize when a proper convex subset of a convex set is
contained in a proper face.

Known situations:
If M is non-singleton and convex and x ∈ ext(M), then
M \ {x} is trivially a proper convex subset of M not
contained in a proper face of M.
If inn(M) 6= ∅, then every convex set N ⊆ M \ inn(M) is
contained in a convex component of M \ inn(M) which is a
proper face of M.
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Generalizing the previous construction

Definition
Let X be a vector space. Let M be a convex subset of X and
consider a convex subset N of M. We define the following sets:

F (N) :=
⋃

n∈N F (n).
C(N) :=

⋂
{S ⊂ M : S is a face of M containing N}.
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Theorem

Let X be a vector space. Let N ⊆ M ⊆ X be convex subsets.
1 F (N) = ∅ iff N consists only of one extreme point of M.
2 If inn(M) 6= ∅, then F (N) = M iff N ∩ inn(M) 6= ∅.
3 F (N) is convex if it is not empty.
4 F (N) is a face of M if it is not empty.
5 C(N) is the minimum face of M containing N.
6 If N \ ext(M) 6= ∅ and D is a face of M containing

N \ ext(M), then D contains N.
7 If N \ ext(M) 6= ∅, then F (N) = F (N \ ext(M)) and

C (N \ ext(M)) = C(N).
8 F (N) = C(N) if and only if N \ ext(M) 6= ∅.
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The solution to the other problem

Corollary
Let X be a vector space. Let M be a convex subset of X with
inn(M) 6= ∅. A proper convex subset N of M is contained in a
proper face of M if and only if N ⊆ M \ inn(M).

The previous corollary fails if we drop the hypothesis that
inn(M) 6= ∅.

Corollary
Let X be a vector space. Let M be a non-singleton convex
subset of X . If ext(M) 6= ∅, then M \ ext(M) is a non-empty
proper convex subset of M not contained in a proper face of M.
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inn(M) 6= ∅. A proper convex subset N of M is contained in a
proper face of M if and only if N ⊆ M \ inn(M).

The previous corollary fails if we drop the hypothesis that
inn(M) 6= ∅.

Corollary
Let X be a vector space. Let M be a non-singleton convex
subset of X . If ext(M) 6= ∅, then M \ ext(M) is a non-empty
proper convex subset of M not contained in a proper face of M.
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The finite dimensional case

Theorem
Let X be a finite dimensional Banach space. Let M be a convex
subset of X . If C is a face of M, then C is closed in M.
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The infinite dimensional case

Theorem
Let X be an infinite dimensional Banach space. There exists an
absolutely convex and absorbing subset M of X with a proper
face C such that C is dense in M and inn (C) = C. In particular,
C is a non-closed proper face of M whose closure in M is not a
proper face of M.

Proof sketch. It suffices to consider Y := ker (g) where
g : X → R is linear but not continuous, x ∈ X such that
g (x) = 1, M := co (Y ∪ {x ,−x}) and C := Y . �
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The infinite dimensional case

Theorem
Let X be an infinite dimensional Banach space. There exists an
absolutely convex and absorbing subset M of X with a proper
face C such that C is dense in M and inn (C) = C. In particular,
C is a non-closed proper face of M whose closure in M is not a
proper face of M.
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Theorem

Let X be an infinite dimensional Banach space. There exists a
bounded, closed, and absolutely convex subset M of X with
two proper faces C and D such that:

1 C ( D, C is dense in D, and D is not dense in M. In
particular, C is not closed.

2 inn (C) = inn (D) = ∅.
Moreover, if X contains an isomorphic copy of c0 or `p for
1 < p <∞, then C and D can be chosen so that their closures
are not faces of M.
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Proof sketch. Let (en)n∈N ⊂ SX be a basic sequence and
consider

M :=

{ ∞∑
n=1

tnen : (tn)n∈N ∈ B`1

}

C :=

{ ∞∑
n=1

tnen : tn ≥ 0,
∞∑

n=1

tn = 1, (tn)n∈N ∈ c00

}
and

D :=

{ ∞∑
n=1

tnen : tn ≥ 0,
∞∑

n=1

tn = 1

}
.

�
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Theorem

Let X be an infinite dimensional Banach space. There exists a
bounded convex subset D of X containing proper faces but free
of inner points. Moreover, if X contains an isomorphic copy of
`1, then D can be chosen to be closed.

Proof sketch. Let (en)n∈N ⊂ SX be a basic sequence. We
may assume without loss of generality that en is an extreme
point of Bspan{en:n∈N} for all n ∈ N. Now take

D :=

{ ∞∑
n=1

tnen : tn ≥ 0,
∞∑

n=1

tn = 1

}

�
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Example
Let X be an infinite dimensional Banach space containing an
isomorphic copy of `1. Let (en)n∈N ⊂ SX be the image of the
`1-basis and assume that en is an extreme point of Bspan{en:n∈N}
for all n ∈ N. Consider the bounded, closed, convex set

M :=

{ ∞∑
n=1

tnen : tn ≥ 0,
∞∑

n=1

tn = 1

}
.

We know that inn(M) = ∅. Now take N := M \ {e1}. Note that
N is a proper convex subset of M not contained in any proper
face of M.
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Theorem
Every infinite dimensional Banach space can be equivalently
renormed so that its unit ball contains a non-closed face.

Corollary
Every infinite dimensional Banach space containing an
isomorphic copy of c0 or `p, 1 < p <∞, can be equivalently
renormed so that its unit ball contains a face whose closure is
not a face.
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THANK YOU FOR YOR
ATTENTION!
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