THE FACELESS PROBLEM

Francisco Javier Garcia-Pacheco

Department of Mathematics College of Engineering University of Cadiz

Workshop of Functional Analysis Departamento de Matemáticas Universidad de Cádiz

CONTENTS

1 INTRODUCTION

- Background
- The motivation
- The tools
- A solution
- 2 Tackeling the faceless problem
 - The hint
 - Constructing the solution
 - Consequences
 - Another problem
- 3 Closure of faces
 - The finite dimensional case
 - The infinite dimensional case

INTRODUCTION Tackeling the faceless problem Closure of faces Background The motivation The tools A solution

< ロト < 同ト < ヨト < ヨト

CONTENTS

1 INTRODUCTION

- Background
- The motivation
- The tools
- A solution
- 2 TACKELING THE FACELESS PROBLEM
 - The hint
 - Constructing the solution
 - Consequences
 - Another problem
- **3** Closure of faces
 - The finite dimensional case
 - The infinite dimensional case

BACKGROUND

BACKGROUND THE MOTIVATION THE TOOLS A SOLUTION

All vector spaces considered will be over the reals Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$\begin{array}{c} x, y \in C \\ t \in (0, 1) \\ tx + (1 - t) y \in F \end{array} \Rightarrow x, y \in F$$

• A point *c* of *C* is said to be an extreme point of *C* if {*c*} is a face of *C*. We will let ext (*C*) denote the set of extreme points of *C*.

BACKGROUND THE MOTIVATION THE TOOLS A SOLUTION

BACKGROUND

All vector spaces considered will be over the reals

Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$\begin{array}{c} x, y \in C \\ t \in (0, 1) \\ tx + (1 - t) y \in F \end{array} \Rightarrow x, y \in F$$

• A point *c* of *C* is said to be an extreme point of *C* if {*c*} is a face of *C*. We will let ext (*C*) denote the set of extreme points of *C*.

Background The motivation The tools A solution

BACKGROUND

All vector spaces considered will be over the reals Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$\begin{array}{c} x,y\in C\\ t\in (0,1) \Rightarrow x,y\in F\\ tx+(1-t)\,y\in F\end{array}$$

• A point *c* of *C* is said to be an extreme point of *C* if {*c*} is a face of *C*. We will let ext (*C*) denote the set of extreme points of *C*.

Background The motivation The tools A solution

BACKGROUND

All vector spaces considered will be over the reals Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$\begin{array}{c} x, y \in C \\ t \in (0, 1) \\ tx + (1 - t) y \in F \end{array} \Rightarrow x, y \in F$$

• A point *c* of *C* is said to be an extreme point of *C* if {*c*} is a face of *C*. We will let ext(*C*) denote the set of extreme points of *C*.

Background The motivation The tools A solution

BACKGROUND

All vector spaces considered will be over the reals Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$egin{aligned} & x,y\in \mathcal{C} \ & t\in (0,1) \ & \Rightarrow x,y\in \mathcal{F} \ & tx+(1-t)\,y\in \mathcal{F} \end{aligned}$$

• A point *c* of *C* is said to be an extreme point of *C* if {*c*} is a face of *C*. We will let ext (*C*) denote the set of extreme points of *C*.

Background The motivation The tools A solution

BACKGROUND

All vector spaces considered will be over the reals Let X be a vector space and C a convex subset of X

A convex subset F ⊆ C is said to be a face of C if F verifies the extremal condition with respect to C:

$$egin{aligned} & x,y\in \mathcal{C} \ & t\in (0,1) \ & \Rightarrow x,y\in \mathcal{F} \ & tx+(1-t)\,y\in \mathcal{F} \end{aligned}$$

A point c of C is said to be an extreme point of C if {c} is a face of C. We will let ext (C) denote the set of extreme points of C.

Background The motivation The tools A solution

< □ > < □ > < □ > < □ > < □ > <

THE FACELESS PROBLEM

It is well known that closed convex subsets with non-empty interior of Hausdorff locally convex topological vector spaces have proper faces in virtue of the Hahn-Banach Theorem.

Problem (The faceless problem)

Characterize the non-singletons convex subsets free of proper faces.

Background The motivation The tools A solution

< □ > < □ > < □ > < □ > < □ >

THE FACELESS PROBLEM

It is well known that closed convex subsets with non-empty interior of Hausdorff locally convex topological vector spaces have proper faces in virtue of the Hahn-Banach Theorem.

Problem (The faceless problem)

Characterize the non-singletons convex subsets free of proper faces.

Background **The motivation** The tools A solution

< □ > < □ > < □ > < □ > < □ >

THE FACELESS PROBLEM

It is well known that closed convex subsets with non-empty interior of Hausdorff locally convex topological vector spaces have proper faces in virtue of the Hahn-Banach Theorem.

PROBLEM (THE FACELESS PROBLEM)

Characterize the non-singletons convex subsets free of proper faces.

Background **The motivation** The tools A solution

< □ > < □ > < □ > < □ > < □ >

THE FACELESS PROBLEM

It is well known that closed convex subsets with non-empty interior of Hausdorff locally convex topological vector spaces have proper faces in virtue of the Hahn-Banach Theorem.

PROBLEM (THE FACELESS PROBLEM)

Characterize the non-singletons convex subsets free of proper faces.

Background The motivation **The tools** A solution

INNER STRUCTURE

• A point *x* of a non-singleton convex set *C* of a vector space *X* is said to be an inner point of *C* if the inner condition holds:

$\forall c \in C \setminus \{x\} \exists d \in C \setminus \{x, c\} \text{ s.t. } x \in (c, d)$

(I) < (I)

Background The motivation **The tools** A solution

INNER STRUCTURE

• A point *x* of a non-singleton convex set *C* of a vector space *X* is said to be an inner point of *C* if the inner condition holds:

$\forall c \in C \setminus \{x\} \exists d \in C \setminus \{x, c\} \text{ s.t. } x \in (c, d)$

< □ > < □ > < □ > < □ > < □ >

Background The motivation **The tools** A solution

INNER STRUCTURE

• A point *x* of a non-singleton convex set *C* of a vector space *X* is said to be an inner point of *C* if the inner condition holds:

$$\forall c \in C \setminus \{x\} \exists d \in C \setminus \{x, c\} \text{ s.t. } x \in (c, d)$$

< □ > < □ > < □ > < □ > < □ >

Background The motivation **The tools** A solution

INNER STRUCTURE

• A point *x* of a non-singleton convex set *C* of a vector space *X* is said to be an inner point of *C* if the inner condition holds:

$$\forall c \in C \setminus \{x\} \exists d \in C \setminus \{x, c\} \text{ s.t. } x \in (c, d)$$

< □ > < □ > < □ > < □ > < □ >

Background The motivation The tools A solution

< □ > < □ > < □ > < □ > < □ >

A SOLUTION TO THE FACELESS PROBLEM

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

One of the keys:

Remark

Background The motivation The tools A solution

・ロト ・ 四ト ・ ヨト

A SOLUTION TO THE FACELESS PROBLEM

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

One of the keys:

Remark

Background The motivation The tools A solution

< □ > < □ > < □ > < □ > < □ > < □ >

A SOLUTION TO THE FACELESS PROBLEM

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

One of the keys:

Remark

Background The motivation The tools A solution

< □ > < □ > < □ > < □ > < □ > < □ >

A SOLUTION TO THE FACELESS PROBLEM

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

One of the keys:

Remark

ANOTHER PROBLEM

< ロト < 同ト < ヨト < ヨト

CONTENTS

1 INTRODUCTION

- Background
- The motivation
- The tools
- A solution
- 2 Tackeling the faceless problem
 - The hint
 - Constructing the solution
 - Consequences
 - Another problem
- **3** Closure of faces
 - The finite dimensional case
 - The infinite dimensional case

THE HINT

THE HINT Constructing the solution Consequences Another problem

・ロト ・聞 ト ・ 国 ト ・ 国 ト

Lemma

Let X be a vector space. Let M be a convex subset of X. If C is a convex subset of M and D is a face of M such that $inn(C) \cap D \neq \emptyset$, then $C \subseteq D$.

Remark

If C is a face of M, then $C \subseteq M \setminus inn(M)$.

THE HINT

THE HINT Constructing the solution Consequences Another problem

(日)

Lemma

Let X be a vector space. Let M be a convex subset of X. If C is a convex subset of M and D is a face of M such that $inn(C) \cap D \neq \emptyset$, then $C \subseteq D$.

Remark

If C is a face of M, then $C \subseteq M \setminus inn(M)$.

A FIRST APPROACH

THE HINT Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

THEOREM

Let *X* be a real vector space. Let *M* be a convex subset of *X*. If *F* is a convex component of $M \setminus inn(M)$, then *F* is a face of *M*.

Unfortunately, if $inn(M) = \emptyset$, then the previous theorem does not solve the faceless problem because the only convex component of $M \setminus inn(M)$ is M.

A FIRST APPROACH

The HINT Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

Theorem

Let X be a real vector space. Let M be a convex subset of X. If F is a convex component of $M \setminus inn(M)$, then F is a face of M.

Unfortunately, if $inn(M) = \emptyset$, then the previous theorem does not solve the faceless problem because the only convex component of $M \setminus inn(M)$ is M.

A FIRST APPROACH

The HINT Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

Theorem

Let X be a real vector space. Let M be a convex subset of X. If F is a convex component of $M \setminus inn(M)$, then F is a face of M.

Unfortunately, if $inn(M) = \emptyset$, then the previous theorem does not solve the faceless problem because the only convex component of $M \setminus inn(M)$ is M.

THE CONSTRUCTION

The hint Constructing the solution Consequences Another problem

Definition

Let *X* be a vector space. Let *M* be a convex subset of *X* and consider $x \in M$. We define the following sets:

- *F*(*x*) := ∪{*S* ⊂ *M* : *S* is a segment of *M* whose interior contains *x*}.
- $C(x) := \bigcap \{ S \subset M : S \text{ is a face of } M \text{ containing } x \}.$

The hint Constructing the solution Consequences Another problem

Theorem

Let X be a vector space. Let M be a convex subset of X and consider $x \in M$.

- $F(x) = \emptyset$ if and only if $x \in ext(M)$.
- ② F(x) = M if and only if $x \in inn(M)$.
- F(x) is convex if it is not empty.
- F(x) is a face of M if it is not empty.
- $x \notin \operatorname{ext}(M)$ if and only if $x \in \operatorname{inn}(F(x))$.
- C(x) is the minimum face of M containing x.
- F(x) = C(x) if and only if $x \notin ext(M)$.
- **◎** $x \notin ext(M)$ if and only if $x \in inn(C(x))$.
- If there exists a face C of M such that $x \in inn(C)$, then C = C(x) = F(x).

The hint Constructing the solution Consequences Another problem

イロト イヨト イヨト イヨト

THE DEFINITE SOLUTION

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

FRANCISCO JAVIER GARCIA-PACHECO THE FACELESS PROBLEM

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

THE DEFINITE SOLUTION

Theorem

Let X be a vector space. A non-singleton convex subset C of X is free of proper faces if and only if C = inn(C).

FRANCISCO JAVIER GARCIA-PACHECO THE FACELESS PROBLEM

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

A CHARACTERIZATION OF LINEAR MANIFOLDS

COROLLARY

Let X be a topological vector space. Let M be a non-singleton closed convex subset of X. The following conditions are equivalent:

- M has proper faces.
- M is not a linear manifold.

The hint Constructing the solution **Consequences** Another problem

A CHARACTERIZATION OF STRICT CONVEXITY

COROLLARY

Let X be a normed space. The following conditions are equivalent:

- X is strictly convex.
- ② $inn(C) = \emptyset$ for all proper faces C of B_X.

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ >

A CHARACTERIZATION OF STRICT CONVEXITY IN TRANSITIVE SPACES

- A proper face C ⊆ S_X of the unit ball B_X of a Banach space X is said to be invariant provided that the invariance condition holds: If T ∈ G_X is a surjective linear isometry on X such that C ⊆ T(C), then C = T(C). Minimal and maximal faces are examples of invariant faces.
- A Banach space is called transitive if any two points of the unit sphere can be taken one into another by means of a surjective linear isometry.

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ >

A CHARACTERIZATION OF STRICT CONVEXITY IN TRANSITIVE SPACES

- A proper face C ⊆ S_X of the unit ball B_X of a Banach space X is said to be invariant provided that the invariance condition holds: If T ∈ G_X is a surjective linear isometry on X such that C ⊆ T(C), then C = T(C). Minimal and maximal faces are examples of invariant faces.
- A Banach space is called transitive if any two points of the unit sphere can be taken one into another by means of a surjective linear isometry.

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

A CHARACTERIZATION OF STRIC CONVEXITY IN TRANSITIVE SPACES

Lemma

Let X be a transitive Banach space. If $C \subseteq S_X$ is an invariant proper face of B_X , then $inn(C) = \emptyset$.

Theorem

Let X be a transitive Banach space. The following conditions are equivalent:

- X is strictly convex.
- all proper faces of B_X are invariant.

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ >

A CHARACTERIZATION OF STRIC CONVEXITY IN TRANSITIVE SPACES

Lemma

Let X be a transitive Banach space. If $C \subseteq S_X$ is an invariant proper face of B_X , then $inn(C) = \emptyset$.

Theorem

Let *X* be a transitive Banach space. The following conditions are equivalent:

- X is strictly convex.
- All proper faces of B_X are invariant.

The hint Constructing the solution **Consequences** Another problem

MINIMAL FACES

Corollary

Let X be a vector space. Let M be a convex subset of X. Let D be a minimal face of M. If D is not a singleton, then D = inn(D).

SCHOLIUM

Let X be a topological vector space. Let M be a linearly bounded closed convex subset of X.

- If C is a face of M, then $C \setminus inn(C) \neq \emptyset$.
- ② If C is a minimal face of M, then C is a singleton.

Every non-singleton linearly bounded closed convex subset of a topological vector space has proper faces

The hint Constructing the solution **Consequences** Another problem

MINIMAL FACES

COROLLARY

Let X be a vector space. Let M be a convex subset of X. Let D be a minimal face of M. If D is not a singleton, then D = inn(D).

Scholium

Let X be a topological vector space. Let M be a linearly bounded closed convex subset of X.

- If C is a face of M, then $C \setminus inn(C) \neq \emptyset$.
- If C is a minimal face of M, then C is a singleton.

Every non-singleton linearly bounded closed convex subset of a topological vector space has proper faces

The hint Constructing the solution **Consequences** Another problem

MINIMAL FACES

COROLLARY

Let X be a vector space. Let M be a convex subset of X. Let D be a minimal face of M. If D is not a singleton, then D = inn(D).

Scholium

Let X be a topological vector space. Let M be a linearly bounded closed convex subset of X.

- If C is a face of M, then $C \setminus inn(C) \neq \emptyset$.
- If C is a minimal face of M, then C is a singleton.

Every non-singleton linearly bounded closed convex subset of a topological vector space has proper faces

FRANCISCO JAVIER GARCIA-PACHECO THE FACELESS PROBLEM

The hint Constructing the solution **Consequences** Another problem

MINIMAL FACES

COROLLARY

Let X be a vector space. Let M be a convex subset of X. Let D be a minimal face of M. If D is not a singleton, then D = inn(D).

SCHOLIUM

Let X be a topological vector space. Let M be a linearly bounded closed convex subset of X.

- If C is a face of M, then $C \setminus inn(C) \neq \emptyset$.
- If C is a minimal face of M, then C is a singleton.

Every non-singleton linearly bounded closed convex subset of a topological vector space has proper faces

The hint Constructing the solution **Consequences** Another problem

< □ > < □ > < □ > < □ > < □ >

THE EXTREME POINT TRICHOTOMY

COROLLARY (THE EXTREME POINT TRICHOTOMY)

Let X be a vector space. Let M be a convex subset of X. Let $x \in M$. There are only three disjoint possibilities for x:

- x is an extreme point of M.
- x is an inner point of M.
- S x is an inner point of a proper face of M.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

ANOTHER PROBLEM OF SIMILAR NATURE

Problem

Characterize when a proper convex subset of a convex set is contained in a proper face.

- If *M* is non-singleton and convex and *x* ∈ ext(*M*), then *M* \ {*x*} is trivially a proper convex subset of *M* not contained in a proper face of *M*.
- If inn(M) ≠ Ø, then every convex set N ⊆ M \ inn(M) is contained in a convex component of M \ inn(M) which is a proper face of M.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

ANOTHER PROBLEM OF SIMILAR NATURE

Problem

Characterize when a proper convex subset of a convex set is contained in a proper face.

- If *M* is non-singleton and convex and *x* ∈ ext(*M*), then *M* \ {*x*} is trivially a proper convex subset of *M* not contained in a proper face of *M*.
- If inn(M) ≠ Ø, then every convex set N ⊆ M \ inn(M) is contained in a convex component of M \ inn(M) which is a proper face of M.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

ANOTHER PROBLEM OF SIMILAR NATURE

Problem

Characterize when a proper convex subset of a convex set is contained in a proper face.

- If *M* is non-singleton and convex and *x* ∈ ext(*M*), then *M* \ {*x*} is trivially a proper convex subset of *M* not contained in a proper face of *M*.
- If inn(M) ≠ Ø, then every convex set N ⊆ M \ inn(M) is contained in a convex component of M \ inn(M) which is a proper face of M.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

ANOTHER PROBLEM OF SIMILAR NATURE

Problem

Characterize when a proper convex subset of a convex set is contained in a proper face.

- If *M* is non-singleton and convex and *x* ∈ ext(*M*), then *M* \ {*x*} is trivially a proper convex subset of *M* not contained in a proper face of *M*.
- If inn(M) ≠ Ø, then every convex set N ⊆ M \ inn(M) is contained in a convex component of M \ inn(M) which is a proper face of M.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

ANOTHER PROBLEM OF SIMILAR NATURE

Problem

Characterize when a proper convex subset of a convex set is contained in a proper face.

- If *M* is non-singleton and convex and *x* ∈ ext(*M*), then *M* \ {*x*} is trivially a proper convex subset of *M* not contained in a proper face of *M*.
- If inn(M) ≠ Ø, then every convex set N ⊆ M \ inn(M) is contained in a convex component of M \ inn(M) which is a proper face of M.

The hint Constructing the solution Consequences Another problem

GENERALIZING THE PREVIOUS CONSTRUCTION

DEFINITION

Let X be a vector space. Let M be a convex subset of X and consider a convex subset N of M. We define the following sets:

•
$$F(N) := \bigcup_{n \in N} F(n).$$

• $C(N) := \bigcap \{ S \subset M : S \text{ is a face of } M \text{ containing } N \}.$

The hint Constructing the solution Consequences Another problem

< 日 > < 同 > < 回 > < 回 > .

Theorem

Let *X* be a vector space. Let $N \subseteq M \subseteq X$ be convex subsets.

- $F(N) = \emptyset$ iff N consists only of one extreme point of M.
- ② If $inn(M) \neq \emptyset$, then F(N) = M iff $N \cap inn(M) \neq \emptyset$.
- **I** F(N) is convex if it is not empty.
- F(N) is a face of M if it is not empty.
- C(N) is the minimum face of M containing N.
- If $N \setminus ext(M) \neq \emptyset$ and D is a face of M containing $N \setminus ext(M)$, then D contains N.
- If $N \setminus \text{ext}(M) \neq \emptyset$, then $F(N) = F(N \setminus \text{ext}(M))$ and $C(N \setminus \text{ext}(M)) = C(N)$.
- So F(N) = C(N) if and only if $N \setminus ext(M) \neq \emptyset$.

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

THE SOLUTION TO THE OTHER PROBLEM

COROLLARY

Let X be a vector space. Let M be a convex subset of X with $inn(M) \neq \emptyset$. A proper convex subset N of M is contained in a proper face of M if and only if $N \subseteq M \setminus inn(M)$.

The previous corollary fails if we drop the hypothesis that $inn(M) \neq \emptyset$.

Corollary

The hint Constructing the solution Consequences Another problem

<ロ> <=> <=> <=> <=> <=>

THE SOLUTION TO THE OTHER PROBLEM

COROLLARY

Let X be a vector space. Let M be a convex subset of X with $inn(M) \neq \emptyset$. A proper convex subset N of M is contained in a proper face of M if and only if $N \subseteq M \setminus inn(M)$.

The previous corollary fails if we drop the hypothesis that $inn(M) \neq \emptyset$.

Corollary

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ > < □ >

THE SOLUTION TO THE OTHER PROBLEM

COROLLARY

Let X be a vector space. Let M be a convex subset of X with $inn(M) \neq \emptyset$. A proper convex subset N of M is contained in a proper face of M if and only if $N \subseteq M \setminus inn(M)$.

The previous corollary fails if we drop the hypothesis that $inn(M) \neq \emptyset$.

Corollary

The hint Constructing the solution Consequences Another problem

< □ > < □ > < □ > < □ > < □ >

THE SOLUTION TO THE OTHER PROBLEM

COROLLARY

Let X be a vector space. Let M be a convex subset of X with $inn(M) \neq \emptyset$. A proper convex subset N of M is contained in a proper face of M if and only if $N \subseteq M \setminus inn(M)$.

The previous corollary fails if we drop the hypothesis that $inn(M) \neq \emptyset$.

COROLLARY

The finite dimensional case The infinite dimensional case

• □ ▶ • □ ▶ • □ ▶ •

CONTENTS

1 INTRODUCTION

- Background
- The motivation
- The tools
- A solution
- 2 TACKELING THE FACELESS PROBLEM
 - The hint
 - Constructing the solution
 - Consequences
 - Another problem
- **3** CLOSURE OF FACES
 - The finite dimensional case
 - The infinite dimensional case

The finite dimensional case The infinite dimensional case

< □ > < □ > < □ > < □ > < □ > < □ >

THE FINITE DIMENSIONAL CASE

Theorem

Let X be a finite dimensional Banach space. Let M be a convex subset of X. If C is a face of M, then C is closed in M.

The finite dimensional case The infinite dimensional case

< □ > < □ > < □ > < □ > < □ > < □ >

THE INFINITE DIMENSIONAL CASE

Theorem

Let X be an infinite dimensional Banach space. There exists an absolutely convex and absorbing subset M of X with a proper face C such that C is dense in M and inn(C) = C. In particular, C is a non-closed proper face of M whose closure in M is not a proper face of M.

Proof sketch. It suffices to consider $Y := \ker(g)$ where $g : X \to \mathbb{R}$ is linear but not continuous, $x \in X$ such that $g(x) = 1, M := \operatorname{co}(Y \cup \{x, -x\})$ and C := Y.

The finite dimensional case The infinite dimensional case

< □ > < □ > < □ > < □ > < □ > < □ >

THE INFINITE DIMENSIONAL CASE

Theorem

Let X be an infinite dimensional Banach space. There exists an absolutely convex and absorbing subset M of X with a proper face C such that C is dense in M and inn(C) = C. In particular, C is a non-closed proper face of M whose closure in M is not a proper face of M.

Proof sketch. It suffices to consider $Y := \ker(g)$ where $g : X \to \mathbb{R}$ is linear but not continuous, $x \in X$ such that $g(x) = 1, M := \operatorname{co}(Y \cup \{x, -x\})$ and C := Y.

イロト イポト イヨト イヨト

Theorem

Let X be an infinite dimensional Banach space. There exists a bounded, closed, and absolutely convex subset M of X with two proper faces C and D such that:

O ⊆ D, C is dense in D, and D is not dense in M. In particular, C is not closed.

$$on (C) = \operatorname{inn} (D) = \emptyset.$$

Moreover, if X contains an isomorphic copy of c_0 or ℓ_p for 1 , then C and D can be chosen so that their closures are not faces of M.

The finite dimensional case The infinite dimensional case

<ロト < 聞 > < 回 > < 回 > .

Proof sketch. Let $(e_n)_{n \in \mathbb{N}} \subset S_X$ be a basic sequence and consider

$$M := \left\{ \sum_{n=1}^{\infty} t_n \boldsymbol{e}_n : (t_n)_{n \in \mathbb{N}} \in \mathsf{B}_{\ell_1} \right\}$$

$$\boldsymbol{C} := \left\{ \sum_{n=1}^{\infty} t_n \boldsymbol{e}_n : t_n \ge 0, \sum_{n=1}^{\infty} t_n = 1, (t_n)_{n \in \mathbb{N}} \in \boldsymbol{c}_{00} \right\}$$

and

$$D:=\left\{\sum_{n=1}^{\infty}t_ne_n:t_n\geq 0,\sum_{n=1}^{\infty}t_n=1\right\}.$$

THE FINITE DIMENSIONAL CASE THE INFINITE DIMENSIONAL CASE

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Theorem

Let X be an infinite dimensional Banach space. There exists a bounded convex subset D of X containing proper faces but free of inner points. Moreover, if X contains an isomorphic copy of ℓ_1 , then D can be chosen to be closed.

Proof sketch. Let $(e_n)_{n \in \mathbb{N}} \subset S_X$ be a basic sequence. We may assume without loss of generality that e_n is an extreme point of $B_{\overline{\text{span}}\{e_n:n \in \mathbb{N}\}}$ for all $n \in \mathbb{N}$. Now take

$$D:=\left\{\sum_{n=1}^{\infty}t_ne_n:t_n\geq 0,\sum_{n=1}^{\infty}t_n=1\right\}$$

(日)

EXAMPLE

Let *X* be an infinite dimensional Banach space containing an isomorphic copy of ℓ_1 . Let $(e_n)_{n \in \mathbb{N}} \subset S_X$ be the image of the ℓ_1 -basis and assume that e_n is an extreme point of $B_{\text{span}\{e_n:n \in \mathbb{N}\}}$ for all $n \in \mathbb{N}$. Consider the bounded, closed, convex set

$$M:=\left\{\sum_{n=1}^{\infty}t_ne_n:t_n\geq 0,\sum_{n=1}^{\infty}t_n=1\right\}.$$

We know that $inn(M) = \emptyset$. Now take $N := M \setminus \{e_1\}$. Note that N is a proper convex subset of M not contained in any proper face of M.

The finite dimensional case The infinite dimensional case

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Every infinite dimensional Banach space can be equivalently renormed so that its unit ball contains a non-closed face.

Corollary

Every infinite dimensional Banach space containing an isomorphic copy of c_0 or ℓ_p , 1 , can be equivalently renormed so that its unit ball contains a face whose closure is not a face.

The finite dimensional case The infinite dimensional case

< 日 > < 同 > < 回 > < 回 > .

Theorem

Every infinite dimensional Banach space can be equivalently renormed so that its unit ball contains a non-closed face.

COROLLARY

Every infinite dimensional Banach space containing an isomorphic copy of c_0 or ℓ_p , 1 , can be equivalently renormed so that its unit ball contains a face whose closure is not a face.

THE FINITE DIMENSIONAL CASE THE INFINITE DIMENSIONAL CASE

<ロト < 聞 > < 回 > < 回 > .

THANK YOU FOR YOR ATTENTION!

FRANCISCO JAVIER GARCIA-PACHECO THE FACELESS PROBLEM