Stabilization of switched linear systems

Bosco García, Carmen Pérez and Quico Benítez

University of Cádiz

Workshop on Functional Analysis: 2018

September 6th

- Introduction to control theory
- **2** Switched linear control systems
- **3** Stabilization of second order switched linear systems
- Invariant set for third order switched systems
- 5 Stabilization of third order switched linear systems
- **6** Example of stability on third order switched linear systems

Control system

In a control system can be several types of variables:

• time variable

Control system

- time variable
- state variables

Control system

- time variable
- state variables
- control variables

Control system

- time variable
- state variables
- control variables
- measured variables

Control system

- time variable
- state variables
- control variables
- measured variables
- noise/uncertain variables

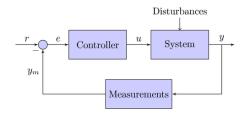
Control system

- time variable
- state variables
- control variables
- measured variables
- noise/uncertain variables

Control system

In a control system can be several types of variables:

- time variable
- state variables
- control variables
- measured variables
- noise/uncertain variables



Juan Bosco García Gutiérrez

Objective

Design a control signal which achieves some **property** or feature desired for the state variable for every noise/uncertain signal.

Objective

Design a control signal which achieves some **property** or feature desired for the state variable for every noise/uncertain signal.

To control the state variable

It can be studied different properties:

• Stability

- Stability
- Stabilization

- Stability
- Stabilization
- Controlability/reachability

- Stability
- Stabilization
- Controlability/reachability
- Invariant sets

- Stability
- Stabilization
- Controlability/reachability
- Invariant sets
- Optimization

A control system can be given by:

• **ODE** (ordinary differential equation)

A control system can be given by:

- **ODE** (ordinary differential equation)
- PDE (partial differential equation)

A control system can be given by:

- **ODE** (ordinary differential equation)
- PDE (partial differential equation)
- Difference equation

A control system can be given by:

- **ODE** (ordinary differential equation)
- **PDE** (partial differential equation)
- Difference equation
- A mixture: for instance, a coupled ODE-PDE system

Classification of control systems

• Discrete systems: variables are discrete

Classification of control systems

- Discrete systems: variables are discrete
- Continuous systems: variables are continuous

Classification of control systems

- Discrete systems: variables are discrete
- Continuous systems: variables are continuous
- Hybrid systems: variables are discrete and continuous

Classification of control

• Open loop control: control depends on time

Classification of control

- Open loop control: control depends on time
- Closed loop control (feedback): control depends on state

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_i are real matrices for each $i \in I$.

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_i are real matrices for each $i \in I$.

• For each $i \in I$ the system

$$\dot{x}(t) = A_i x(t)$$

is called subsystem.

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_i are real matrices for each $i \in I$.

• For each $i \in I$ the system

$$\dot{x}(t) = A_i x(t)$$

is called subsystem.

• The function $\sigma : \mathbb{R}_+ \to I$ is called **switching signal**.

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_i are real matrices for each $i \in I$.

• For each $i \in I$ the system

$$\dot{x}(t) = A_i x(t)$$

is called subsystem.

- The function $\sigma : \mathbb{R}_+ \to I$ is called **switching signal**.
- σ is a piecewise constant function.

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_i are real matrices for each $i \in I$.

• For each $i \in I$ the system

$$\dot{x}(t) = A_i x(t)$$

is called subsystem.

- The function $\sigma : \mathbb{R}_+ \to I$ is called **switching signal**.
- σ is a piecewise constant function.
- The discontinuities of σ are called **switching times**.

Example of switching signal

$$\sigma(t) = \left\{egin{array}{ll} 1, & ext{if } t \in [0,1) \ 2, & ext{if } t \in [1,10) \ 1, & ext{if } t \in [10,13.4) \ 2, & ext{if } t \in [13.4,20) \ dots \end{array}
ight.$$

Example of switching signal

$$\sigma(t) = \left\{egin{array}{ll} 1, & ext{if } t \in [0,1) \ 2, & ext{if } t \in [1,10) \ 1, & ext{if } t \in [10,13.4) \ 2, & ext{if } t \in [13.4,20) \ dots \end{array}
ight.$$

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(1)

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(1)

For an initial condition x₀ ∈ ℝⁿ and a switching signal σ ∈ S(ℝ₊, I), the solution of (3) is denote by φ(·; x₀, σ).

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_k is a real matrices for each $k \in I$.

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_k is a real matrices for each $k \in I$.

Problem 1

If every subsystem A_k is unstable. Construct a switching signal such that the system is stable.

Switched linear control system

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_k is a real matrices for each $k \in I$.

Switched linear control system

A switched linear control system is given by

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

where A_k is a real matrices for each $k \in I$.

Problem 2

If every subsystem A_k is stable.

Is it the system stable for every switching signal?

$\sigma\text{-convergent}$

Let σ be a switching signal. A point $x_0 \in \mathbb{R}^n$ is σ -convergent for the switched system (3) if

 $\lim_{t\to+\infty}\varphi(t;x_0,\sigma)=0$

$\sigma\text{-convergent}$

Let σ be a switching signal. A point $x_0 \in \mathbb{R}^n$ is σ -convergent for the switched system (3) if

$$\lim_{\to +\infty} \varphi(t; x_0, \sigma) = 0$$

Convergent

A point $x_0 \in \mathbb{R}^n$ is convergent for the switched system (3) if there is a switching signal σ such that x_0 is σ -convergent.

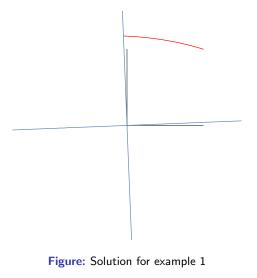
Example 1

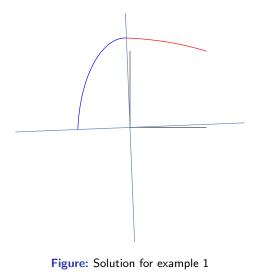
$$A_1 = \left(\begin{array}{cc} .1 & -2 \\ .5 & .1 \end{array}
ight) \qquad A_2 = \left(\begin{array}{cc} .1 & -.5 \\ 2 & .1 \end{array}
ight)$$

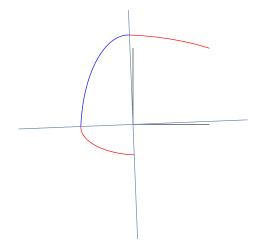
Example 1

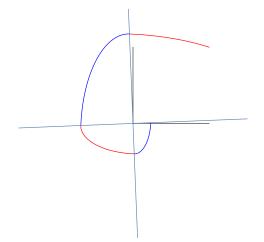
$$A_1 = \begin{pmatrix} .1 & -2 \\ .5 & .1 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} .1 & -.5 \\ 2 & .1 \end{pmatrix}$

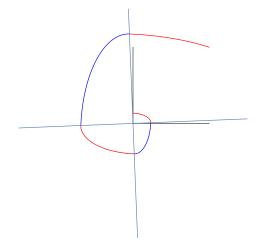
- Eigenvalues of A_1 : $.1 \pm i$
- Eigenvalues of A_2 : $.1 \pm i$

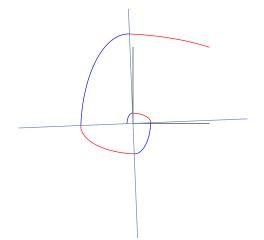


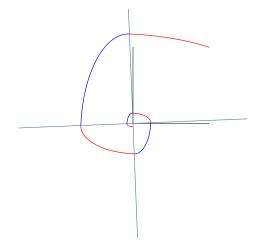












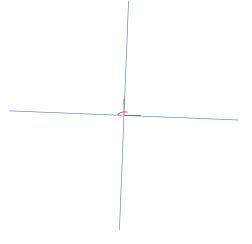
Example 2

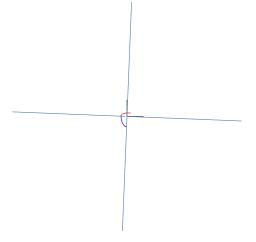
$$A_1 = \begin{pmatrix} -.1 & -2 \\ .5 & -.1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} -.1 & -.5 \\ 2 & -.1 \end{pmatrix}$$

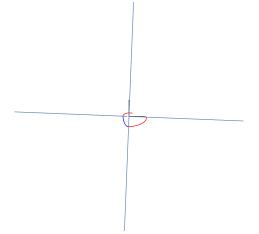
Example 2

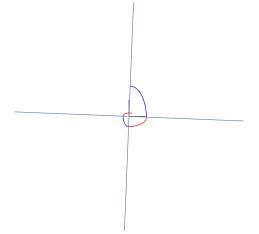
$$A_1 = \begin{pmatrix} -.1 & -2 \\ .5 & -.1 \end{pmatrix}$$
 $A_2 = \begin{pmatrix} -.1 & -.5 \\ 2 & -.1 \end{pmatrix}$

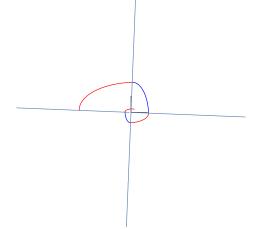
- Eigenvalues of A_1 : $-.1 \pm i$
- Eigenvalues of A_2 : $-.1 \pm i$

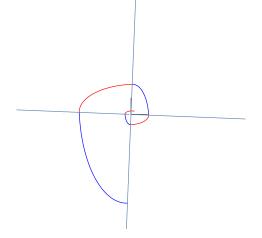


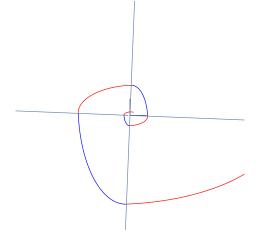












$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(2)

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(2)

Stabilization of switched linear systems

For a switched linear system, the stabilization problem is the classification of convergent point.

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(2)

Stabilization of switched linear systems

For a switched linear system, the stabilization problem is the classification of convergent point.

• For second order switched linear systems with two subsystems the stabilization problem is solved.

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(2)

Stabilization of switched linear systems

For a switched linear system, the stabilization problem is the classification of convergent point.

- For second order switched linear systems with two subsystems the stabilization problem is solved.
 - [Benítez et al., 2011] F. Benítez and C. Pérez. Methods of stabilizing or destabilizing a switched linear system, Journal of Mathematical Sciences, vol. 177, no. 3, pp. 345–356, 2011

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(3)

$$\begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) \\ x(0) = x_0 \end{cases}$$
(3)

Invariant set for switched systems

A set $S \subset \mathbb{R}^n$ is an invariant set for the switched system if there exist a switching law σ such that if $x_0 \in S$ then $\phi(t; x_0, \sigma) \in S$ for each $t \ge 0$.

$$\dot{x} = A_k x, \qquad k = 1, 2, 3,$$

where A_1, A_2, A_3 are 3×3 matrices.

$$\dot{x} = A_k x, \qquad k = 1, 2, 3,$$

where A_1, A_2, A_3 are 3×3 matrices.

Assumption 1

Each A_k , k = 1, 2, 3, has complex eigenvalues, i.e. the numbers λ_k , $a_k + b_k i$, $a_k - b_k i$ are the eigenvalues of A_k with $b_k \neq 0$.

$$\dot{x} = A_k x, \qquad k = 1, 2, 3,$$

where A_1, A_2, A_3 are 3×3 matrices.

Assumption 1

Each A_k , k = 1, 2, 3, has complex eigenvalues, i.e. the numbers λ_k , $a_k + b_k i$, $a_k - b_k i$ are the eigenvalues of A_k with $b_k \neq 0$.

Assumption 2

Let $v_k \in \mathbb{R}^3$ be an eigenvector of A_k associated to the real eigenvalue λ_k , k = 1, 2, 3, i.e. v_k is a non-zero vector such that $A_k v_k = \lambda_k v_k$, then v_1, v_2, v_3 are linear independent vectors.

Proposition

Let P be a $n \times n$ non-singular matrix. The following statements are equivalent

• $P(S) \subset \mathbb{R}^n$ is an invariant set for the switched system

$$\dot{x} = A_{\sigma} x_{\sigma}$$

2 $S \subset \mathbb{R}^n$ is an invariant set for the switched system

$$\dot{y} = P^{-1}A_{\sigma}Py.$$

Where we denote $P(S) = \{Py : y \in S\}$.

We denote
$$e_1 = (1, 0, 0)$$
, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$.

Assumption 1

Each A_k , k = 1, 2, 3, has complex eigenvalues, i.e. the numbers λ_k , $a_k + b_k i$, $a_k - b_k i$ are the eigenvalues of A_k with $b_k \neq 0$.

Assumption 2'

For each k = 1, 2, 3 the vector e_k is an eigenvector of A_k associated to the eigenvalue λ_k .

Proposition

If A_1, A_2, A_3 verifies Assumption 1 and 2' then

$$\begin{aligned} A_1 &= \begin{pmatrix} \lambda_1 & a_{12}^1 & a_{13}^1 \\ 0 & a_{22}^2 & a_{23}^2 \\ 0 & a_{32}^1 & a_{33}^1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} a_{21}^2 & 0 & a_{13}^2 \\ a_{21}^2 & \lambda_2 & a_{23}^2 \\ a_{31}^2 & 0 & a_{33}^2 \end{pmatrix} \\ A_3 &= \begin{pmatrix} a_{11}^3 & a_{12}^3 & 0 \\ a_{21}^3 & a_{22}^2 & 0 \\ a_{31}^3 & a_{32}^3 & \lambda_3 \end{pmatrix} \end{aligned}$$
with $a_{23}^1 a_{32}^1 < 0$, $a_{12}^2 a_{31}^2 < 0$, $a_{13}^2 a_{31}^2 < 0$, $a_{13}^2 a_{31}^2 < 0$, $a_{12}^2 a_{31}^2 < 0$.

Octants of \mathbb{R}^3

Every octant of \mathbb{R}^3 is identified with three signs, i.e. each $(a, b, c) \in \{-1, +1\}^3$ is identified with the octant

$$\mathcal{O}(a, b, c) = \{(x_1, x_2, x_3) : ax_1 \ge 0, bx_2 \ge 0, cx_3 \ge 0\}.$$

Octants of \mathbb{R}^3

Every octant of \mathbb{R}^3 is identified with three signs, i.e. each $(a, b, c) \in \{-1, +1\}^3$ is identified with the octant

$$\mathcal{O}(a, b, c) = \{(x_1, x_2, x_3) : ax_1 \ge 0, bx_2 \ge 0, cx_3 \ge 0\}.$$

The faces of O(a, b, c) are

$$\begin{split} &O(0, b, c) = \{(0, x_2, x_3) : bx_2 > 0, cx_3 > 0\}, \\ &O(a, 0, c) = \{(x_1, 0, x_3) : ax_1 > 0, cx_3 > 0\}, \\ &O(a, b, 0) = \{(x_1, x_2, 0) : ax_1 > 0, bx_2 > 0\}, \\ &O(a, 0, 0) = \{(x_1, 0, 0) : ax_1 > 0\}, \\ &O(0, b, 0) = \{(0, x_2, 0) : bx_2 > 0\}, \\ &O(0, 0, c) = \{(0, 0, x_3) : cx_3 > 0\}. \end{split}$$

Face switching law

$$\sigma(x) = \begin{cases} s_1 & \text{if } x \in O(0, b, c) \\ s_2 & \text{if } x \in O(a, 0, c) \\ s_3 & \text{if } x \in O(a, b, 0) \\ s_{12} & \text{if } x \in O(0, 0, c) \\ s_{13} & \text{if } x \in O(0, b, 0) \\ s_{23} & \text{if } x \in O(a, 0, 0) \end{cases}$$

where $s_1, s_2, s_3 \in \{1, 2, 3\}$ and $s_{ij} = s_i$ or $s_{ij} = s_j$ for each $1 \le i < j \le 3$.

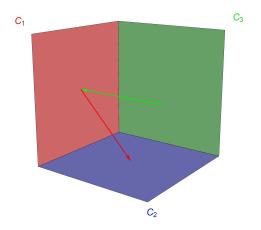


Figure: Switching when the state reaches the face

Face switching laws σ_1 and σ_2

	3	$\text{if } x \in O(0,b,c)$		2	$\text{if } x \in O(0,b,c)$
	1	if $x \in O(a, 0, c)$		3	if $x \in O(a, 0, c)$
$\sigma(v) = v$	2	if $x \in O(a, b, 0)$	$\sigma(v) = v$	1	if $x \in O(a, b, 0)$
$o_1(x) = \{$	3	$\begin{array}{l} \text{if } x \in O(a,b,0) \\ \text{if } x \in O(0,0,c) \end{array}$	$O_2(x) = \{$	3	if $x \in O(0,0,c)$
	2	$\text{if } x \in O(0, b, 0)$		2	$\text{if } x \in O(0,b,0)$
	1	if $x \in O(a, 0, 0)$		1	if $x \in O(a, 0, 0)$

Theorem

Let O(a, b, c) be an octant in \mathbb{R}^3 with $(a, b, c) \in \{-1, +1\}^3$, then the following statements are equivalent

- O(a, b, c) is an invariant set for the switched system with the face switching law σ,
- 2 the following statements hold

•
$$ab e'_1 A_{s_1} e_2 \ge 0$$
 and $ac e'_1 A_{s_1} e_3 \ge 0$,
• $ab e'_1 A_{s_1} e_3 \ge 0$, and $bc e'_1 A_{s_1} e_3 \ge 0$.

$$abe_2A_{s_2}e_1 \ge 0$$
 and $bce_2A_{s_2}e_3 \ge 0$

b
$$ac e_3 A_{s_3} e_1 \ge 0$$
 and $bc e_3 A_{s_3} e_2 \ge 0$

$$bc e_2^{\prime} A_{s_1} e_3 \geq 0 \text{ or } ac e_1^{\prime} A_{s_2} e_3 \geq 0,$$

3
$$ab e_1^{\prime} A_{s_3} e_2 \ge 0$$
 or $bc e_3^{\prime} A_{s_1} e_2 \ge 0$,

$$\bigcirc$$
 ab $e_2'A_{s_3}e_1\geq 0$ or ac $e_3'A_{s_2}e_1\geq 0$

Where ' denotes transpose.

Corollary for σ_1

If A_1, A_2 and A_3 verify Assumption 1 and 2', the following statements are equivalent

- **(**O(a, b, c) is invariant for the switched system with face switching law σ_1 ,
- 3 sign (a_{12}^3) = sign(ab), sign (a_{23}^1) = sign(bc) and sign (a_{31}^2) = sign(ac).

Corollary for σ_1

If A_1, A_2 and A_3 verify Assumption 1 and 2', the following statements are equivalent

- **(**O(a, b, c) is invariant for the switched system with face switching law σ_1 ,
- 3 sign (a_{12}^3) = sign(ab), sign (a_{23}^1) = sign(bc) and sign (a_{31}^2) = sign(ac).

Corollary for σ_2

If A_1, A_2 and A_3 verify Assumption 1 and 2', the following statements are equivalent

- **0** O(a, b, c) is invariant for the switched system with face switching law σ_2 ,
- **2** $\operatorname{sign}(a_{12}^3) = -\operatorname{sign}(ab)$, $\operatorname{sign}(a_{23}^1) = -\operatorname{sign}(bc)$ and $\operatorname{sign}(a_{31}^2) = -\operatorname{sign}(ac)$.

		σ_1			σ_2		
$a_{23}^1 a_{31}^2$	$_{1} a_{12}^{3}$	bc	ac	ab	bc	ас	ab
+ +	+	+	+	+	—	—	_
+ +	_	+	+	_	_	_	+
+ -	+	+	_	+	_	+	_
+ -	_	+	_	_	_	+	+
- +	+	_	+	+	+	_	_
- +	_	_	+	_	+	_	+
	+	_	_	+	+	+	_
	—	-	—	_	+	+	+

Table: Signs of *bc*, *ac* and *ab* deduce from signs of a_{23}^1 , a_{31}^2 and a_{12}^3 , for each law σ_1 and σ_2 .

а	Ь	с	bc	ac	ab
+	+	+	+	+	+
+	+	_	—	—	+
+	—	+	_	+	—
+	_	_	+	_	_
_	+	+	+	_	_
_	+	_	—	+	_
_	_	+	—	_	+
—	—	_	+	+	+

Table: All posibilities of signs of *bc*, *ac* and *ab* for each octant O(a, b, c).

			σ_1			σ_2		
a_{23}^1	a_{31}^2	a_{12}^{3}	bc	ас	ab	bc	ас	ab
+	+	+	+	+	+			
+	+	_				_	_	+
+	_	+				_	+	_
+	_	_	+	_	_			
_	+	+				+	_	_
_	+	_	_	+	_			
_	_	+	_	_	+			
_	_	-				+	+	+

Table: Signs of *bc*, *ac* and *ab* deduce from signs of a_{23}^1 , a_{31}^2 and a_{12}^3 , for each law σ_1 and σ_2 .

If A_1, A_2 and A_3 verify Assumption 1 and 2. The following steps give an invariant set for the switched system:

If A_1, A_2 and A_3 verify Assumption 1 and 2. The following steps give an invariant set for the switched system:

Step 1. Making a change of variable such that $P^{-1}A_1P$, $P^{-1}A_2P$ and $P^{-1}A_3P$ verify Assumption 1 and 2'.

If A_1, A_2 and A_3 verify Assumption 1 and 2. The following steps give an invariant set for the switched system:

Step 1. Making a change of variable such that $P^{-1}A_1P$, $P^{-1}A_2P$ and $P^{-1}A_3P$ verify Assumption 1 and 2'.

Step 2. Calculating $a, b, c \in \{-1, +1\}^3$ such that the octant O(a, b, c) is invariant for the switched system with matrices $P^{-1}A_1P, P^{-1}A_2P, P^{-1}A_3P$ and the face switching law σ_1 or σ_2 .

If A_1, A_2 and A_3 verify Assumption 1 and 2. The following steps give an invariant set for the switched system:

Step 1. Making a change of variable such that $P^{-1}A_1P$, $P^{-1}A_2P$ and $P^{-1}A_3P$ verify Assumption 1 and 2'.

Step 2. Calculating $a, b, c \in \{-1, +1\}^3$ such that the octant O(a, b, c) is invariant for the switched system with matrices $P^{-1}A_1P, P^{-1}A_2P, P^{-1}A_3P$ and the face switching law σ_1 or σ_2 .

Step 3. By a previously Proposition, the set

$$P(O(a,b,c)) = \{Px : x \in O(a,b,c)\}$$

is invariant for the original switched system with matrices A_1, A_2 and A_3 .

$$A_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & -\frac{10}{3} \\ 0 & \frac{4}{3} & \frac{5}{3} \end{pmatrix}, A_{2} = \begin{pmatrix} -3 & 2 & 2 \\ 0 & -1 & 0 \\ -4 & 4 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 4 & -2 & 0 \\ 4 & 0 & 0 \\ 1 & -\frac{3}{2} & 1 \end{pmatrix}$$

$$A_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & -\frac{10}{3} \\ 0 & \frac{4}{3} & \frac{5}{3} \end{pmatrix}, A_{2} = \begin{pmatrix} -3 & 2 & 2 \\ 0 & -1 & 0 \\ -4 & 4 & 1 \end{pmatrix}, A_{3} = \begin{pmatrix} 4 & -2 & 0 \\ 4 & 0 & 0 \\ 1 & -\frac{3}{2} & 1 \end{pmatrix}.$$

/

Proposition

Let P be a non-singular matrix. The initial condition $x_0 \in \mathbb{R}^n$ is a σ -convergent point for the switched system

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$

if and only if the initial condition $y_0 = P^{-1}x_0$ is a σ -convergent point for the switched system

$$\dot{y}(t) = P^{-1}A_{\sigma(t)}Py_0.$$

We denote
$$e_1 = (1, 0, 0)$$
, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$.

Assumption 1

Each A_k , k = 1, 2, 3, has complex eigenvalues, i.e. the numbers λ_k , $a_k + b_k i$, $a_k - b_k i$ are the eigenvalues of A_k with $b_k \neq 0$.

Assumption 2'

For each k = 1, 2, 3 the vector e_k is an eigenvector of A_k associated to the eigenvalue λ_k .

• Let the positive octant

$$C = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0\}$$

(4)

• Let the positive octant

$$C = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0\}$$
(4)

Define the faces

$$C_1 = \{ (x_1, 0, x_3) : x_1, x_3 \ge 0 \}, \quad C_2 = \{ (x_1, x_2, 0) : x_1, x_2 \ge 0 \}$$

and $C_3 = \{ (0, x_2, x_3) : x_2, x_3 \ge 0 \}$

• Let the positive octant

$$C = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0\}$$
(4)

Define the faces

$$\begin{aligned} \mathcal{C}_1 &= \{ (x_1, 0, x_3) : x_1, x_3 \geq 0 \}, \quad \mathcal{C}_2 &= \{ (x_1, x_2, 0) : x_1, x_2 \geq 0 \} \\ & \text{and} \quad \mathcal{C}_3 &= \{ (0, x_2, x_3) : x_2, x_3 \geq 0 \} \end{aligned}$$

Define the edge

$$V_1 = \{ (x_1, 0, 0) : x_1 \ge 0 \}, \quad V_2 = \{ (0, x_2, 0) : x_2 \ge 0 \}$$

and $V_3 = \{ (0, 0, x_3) : x_3 \ge 0 \}$

Face switching laws σ_1

$$\sigma_1(x) = \begin{cases} 1 & \text{if } x \in C_1 \\ 2 & \text{if } x \in C_2 \\ 3 & \text{if } x \in C_3 \\ 1 & \text{if } x \in V_1 \\ 2 & \text{if } x \in V_2 \\ 3 & \text{if } x \in V_3 \end{cases}$$

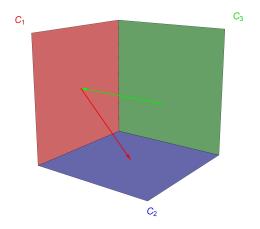


Figure: Switching when the state reaches the face

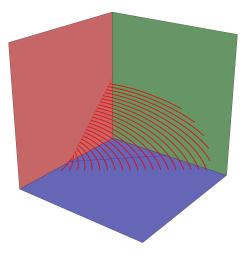
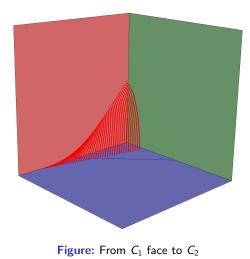


Figure: From C_1 face to C_2 and C_3 face



• $\Phi_1: \mathcal{C}_1 o \mathcal{C}_2$,

• $\Phi_1 : C_1 \rightarrow C_2$, • $\Phi_2 : C_2 \rightarrow C_3$,

- $\Phi_1: \mathcal{C}_1 o \mathcal{C}_2$,
- $\Phi_2: C_2
 ightarrow C_3$,
- $\Phi_3: C_3 \rightarrow C_1.$

•
$$\Phi_1: C_1 \to C_2$$
, $\Phi_1(x_0) = e^{A_1 T_1} x_0$.

•
$$\Phi_1: C_1 \to C_2, \qquad \Phi_1(x_0) = e^{A_1 T_1} x_0.$$

• $\Phi_2: C_2 \to C_3, \qquad \Phi_2(x_0) = e^{A_2 T_2} x_0.$

•
$$\Phi_1 : C_1 \to C_2$$
, $\Phi_1(x_0) = e^{A_1 T_1} x_0$.
• $\Phi_2 : C_2 \to C_3$, $\Phi_2(x_0) = e^{A_2 T_2} x_0$.
• $\Phi_3 : C_3 \to C_1$, $\Phi_3(x_0) = e^{A_3 T_3} x_0$.

- $\Phi_1: C_1 \to C_2,$ $\Phi_1(x_0) = e^{A_1 T_1} x_0.$ • $\Phi_2: C_2 \to C_3,$ $\Phi_2(x_0) = e^{A_2 T_2} x_0.$
- $\Phi_2: C_2 \neq C_3, \qquad \Phi_2(\lambda_0) = c \quad \lambda_0.$ • $\Phi_3: C_3 \to C_1, \qquad \Phi_3(x_0) = e^{A_3 T_3} x_0.$

•
$$\Phi_1 : C_1 \to C_2,$$
 $\Phi_1(x_0) = e^{A_1 T_1} x_0.$
• $\Phi_2 : C_2 \to C_3,$ $\Phi_2(x_0) = e^{A_2 T_2} x_0.$
• $\Phi_3 : C_3 \to C_1,$ $\Phi_3(x_0) = e^{A_3 T_3} x_0.$

$$\Phi = \Phi_3 \circ \Phi_2 \circ \Phi_1 : C_1 \to C_1.$$

•
$$\Phi_1 : C_1 \to C_2,$$
 $\Phi_1(x_0) = e^{A_1 T_1} x_0.$
• $\Phi_2 : C_2 \to C_3,$ $\Phi_2(x_0) = e^{A_2 T_2} x_0.$
• $\Phi_3 : C_3 \to C_1,$ $\Phi_3(x_0) = e^{A_3 T_3} x_0.$

$$\Phi = \Phi_3 \circ \Phi_2 \circ \Phi_1 : C_1 \to C_1.$$

$$\Phi(x_0) = e^{A_3 T_3} e^{A_2 T_2} e^{A_1 T_1} x_0.$$

Frobenius theorem

An irreducible non-negative matrix M always has a positive eigenvalue r that is a simple root of the characteristic equation, there is an eigenvector of r with positive coordinates, and the other eigenvalues has modulus less or equals than r.

Frobenius theorem

An irreducible non-negative matrix M always has a positive eigenvalue r that is a simple root of the characteristic equation, there is an eigenvector of r with positive coordinates, and the other eigenvalues has modulus less or equals than r.

Consider *M* the matrix $e^{A_3T_3}e^{A_2T_2}e^{A_1T_1}$ with respect the basis $\{e_1, e_3\}$.

Theorem

If the previous eigenvalue r of M is less than 1, then every initial condition $x_0 \in C$ is σ_1 -convergent.

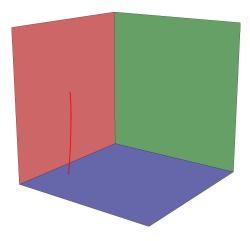
•
$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -25 & 1 \end{pmatrix}$$

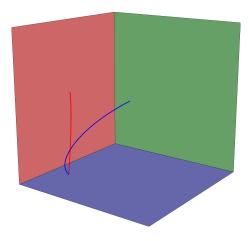
• $A_2 = \begin{pmatrix} 1 & 0 & -10 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
• $A_3 = \begin{pmatrix} 1 & 1 & 0 \\ -10 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

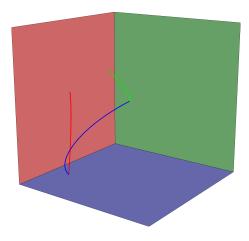
•
$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -25 & 1 \end{pmatrix}$$

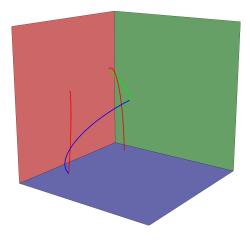
• $A_2 = \begin{pmatrix} 1 & 0 & -10 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
• $A_3 = \begin{pmatrix} 1 & 1 & 0 \\ -10 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

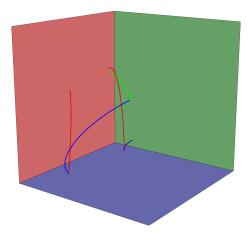
- Eigenvalues of A_1 : $1, 1 \pm 5$.
- Eigenvalues of A_2 : 1, 1 ± 3.16228.
- Eigenvalues of A_3 : 1,1 ± 3.16228.

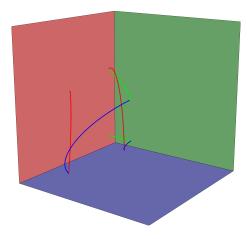


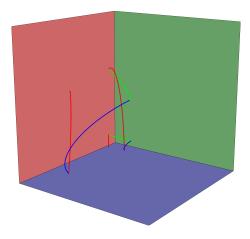


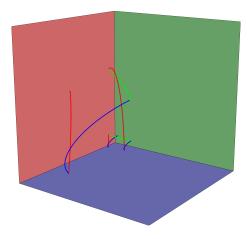












Thank for your attention

