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Lie symmetries and Lie symmetry algebras

Let us consider an nth-order ODE

xn = F (t, x , . . . , xn−1) (1)

defined for (t, x) ∈ M, being M ⊂ R2 some open and simply
connected subset.

t and x are the independent and dependent variables, respectively,
and xi = d ix

dt i
for i = 1, . . . , n.

M(n) stands for the nth-order jet space, which has local coordinates
(t, x (n)) = (t, x , x1, . . . , xn).

The total derivative operator

Dt = ∂t + x1∂x + x2∂x1 + · · ·+ xn∂xn−1 + · · ·
Vector field associated to equation (1):

A = ∂t + x1∂x + x2∂y1 + · · ·+ F (t, x , . . . , xn−1)∂xn−1 . (2)
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Definition (standard prolongation of vector fields)

Let X = ξ(t, x)∂t + η(t, x)∂x be a smooth vector field defined on M. The
(standard) nth-order prolongation of X is the vector field

X(n) = X +
n∑

i=1

η(i)(t, x (i))∂xi ,

defined on M(n), where

η(i)(t, x (i)) = Dx(η(i−1)(t, x (i−1)))− xiDt(ξ(t, x)), i = 1, . . . , n.

P. J. Olver 1986.
Applications of Lie groups to differential equations.

Springer, New York.
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Definition

A smooth vector field X = ξ(t, x)∂t + η(t, x)∂x defined on M is a Lie
point symmetry of equation (1) if and only if

1

X(n)(xn − F (t, x , . . . , xn−1)) = 0 if xn = F (t, x , . . . , xn−1), (3)

2 or equivalently
[X(n−1),A] = −A(ξ)A. (4)

P. J. Olver 1986.
Applications of Lie groups to differential equations.

Springer, New York.
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Use of a Lie point symmetry to reduce the order of equation (1)

In the neighbourhood of a point where X does not vanish there exist
two functions z = z(t, x) and α = α(t, x) such that

X(z) = 0 and X(α) = 1.

Consider wi−1 = d iα
dz i

, for i = 1, . . . , n, where w0 = w .

Then we have that X(i)(wi−1) = 0, for i = 1, . . . , n.

Consider the local change of variables

ϕ(t, x , . . . , xn) = (z , α,w , . . . ,wn−1). (5)
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Suppose that equation (1) becomes

F̃ (y , α,w , . . . ,wn−1) = 0 (6)

in the new variables.

The vector field X(n) in the new variables becomes

X̃(n) = ∂α,

therefore the infinitesimal criteria establishes that

∂F̃

∂α
= 0 if F̃ = 0.

We obtain a reduced equation

F̃ (z ,w , · · · ,wn−1) = 0. (7)
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Remark: If n = 1 then we have that F̃ (z ,w) = 0, hence we can
locally obtain

w =
dα

dz
= g(z).

In this case the solution can be obtained by a single quadrature:

α =

∫
g(z)dz + C , C ∈ R.

Recovery of solutions
Suppose that w = H(z ;C1, . . . ,Cn−1) is the general solution of (7).

Auxiliary equation:

w(t, x , x1) = H(z(t, x);C1, . . . ,Cn−1),

X is a Lie symmetry of the auxiliary equation.
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Let L be the set of Lie symmetries of equation (1).

Then we have that:

1 If X,Y ∈ L and α, β ∈ R then αX + βY ∈ L.
2 If X,Y ∈ L then [X,Y] ∈ L.

Therefore L has the structure of real Lie algebra with respect to the
usual Lie bracket of vector fields.

L is called the Lie symmetry algebra of equation (1).
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Use of a Lie symmetry algebra to reduce the order of equation (1)

Assume that L 6= ∅ and dim(L) = k , 2 ≤ k ≤ n.

By using X1 ∈ L we can reduce the order of equation (1) by one:

F̃ (z ,w , . . . ,wn−1) = 0.

We would like to use another Lie symmetry X2 ∈ L, X2 6= X1, to
reduce the order again.

The vector field X
(1)
2 becomes in terms of the coordinates (z , α,w):

X̃
(1)
2 = X

(1)
2 (z)∂z + X

(1)
2 (α)∂α + X

(1)
2 (w)∂w .

We have to project X̃
(1)
2 to the space of coordinates (y ,w).
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For that
∂X

(1)
2 (z)

∂α
= 0 and

∂X
(1)
2 (w)

∂α
= 0,

which happen if and only if

[X1,X2] = cX1, c ∈ R.

Let us assume that L is solvable, i.e, it admits a decomposition of the
form

〈X1〉 / 〈X1,X2〉 / · · · / 〈X1, . . . ,Xk〉.

Then the order of the equation (1) can be stepwise reduced by k.
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λ-symmetries

Definition (λ-prolongation of vector fields)

For a given smooth vector field X = ξ(t, x)∂t + η(t, x)∂x defined on M
and for an arbitrary function λ ∈ C∞(M(1)), the λ-prolongation of order n
of X is the vector field

X[λ,(n)] = ξ(t, x)∂t +
n∑

i=0

η[λ,(i)](t, x (i))∂xi , (8)

defined on M(n), where η[λ,(0)](t, x) = η(t, x) and, for 1 ≤ i ≤ n,

η[λ,(i)](t, x (i)) = Dt

(
η[λ,(i−1)](t, x (i−1))

)
− Dt(ξ(t, x))xi

+λ
(
η[λ,(i−1)](t, x (i−1))− ξ(t, x)xi

)
.

(9)

Muriel, C. and Romero, J. L. 2001.
New methods of reduction for ordinary differential equations.

IMA Journal of Applied Mathematics 66 111-125
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Definition

A pair (X, λ), where X = ξ(t, x)∂t + η(t, x)∂x is a smooth vector field
defined on M and λ ∈ C∞(M(1)), is a λ-symmetry of equation (1) if and
only if

1

X[λ,(n)](xn − F (t, x , . . . , xn−1)) = 0 if xn = F (t, x , . . . , xn−1), (10)

2 or equivalently

[X[λ,(n−1)],A] = −(A(ξ) + λξ)A + λX[λ,(n−1)]. (11)

Muriel, C. and Romero, J. L. 2001.
New methods of reduction for ordinary differential equations.

IMA Journal of Applied Mathematics 66 111-125
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IMA Journal of Applied Mathematics 66 111-125
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Use of λ-symmetries to reduce the order of equation (1)

Suppose that (X, λ) is a λ-symmetry of equation (1).

Let y = y(t, x) and w = w(t, x , x1) be two functions such that

X[λ,(1)](y) = X[λ,(1)](w) = 0.

(IBDP) If we consider the invariants obtained by derivation

wi =
d (i−1)w

dy (i−1)
, i = 1, . . . , n − 1,

then we have that

X[λ,(i)](wi ) = 0, i = 1, . . . , n − 1.

Consider the local change of variables

φ(t, x , x1, . . . , xn) = (y , β,w , . . . ,wn−1),

where β is some function such that X(β) 6= 0.
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By the invariance criteria we obtain a reduced equation of the form

F̃ (y ,w , . . . ,wn−1) = 0.

Suppose that w = H(y ;C1, . . . ,Cn−1) is the general solution of the
above reduced equation.

Auxiliary equation:

w(t, x , x1) = H(y(t, x);C1, . . . ,Cn−1).
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Liénard I-type equation

The Liénard I-type equation

x2 + a1(x)x1 + a0(x) = 0, (12)

where a1 and a0 are arbitrary smooth functions of the dependent
variable x and xi = d ix

dt i
for i = 1, 2.

A = ∂t + x1∂x − (a1(x)x1 + a0(x))∂x1 .

Equation (12) models some famous nonlinear oscillators such as the
van der Pol equation, the Duffing oscillator, the Helmholtz oscillator,
etc.

It appears as reductions of nonlinear partial differential equations
(PDEs) such as the Fisher equation, the Burgers-Korteweg-de Vries
equation, and the Burgers-Huxley equation.
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We have that X1 = ∂t is a Lie point symmetry of equation (12).

The associated reduced equation by means of the transformation
w = 1/x1 becomes

w ′(x) = a1(x)w(x)2 + a0(x)w(x)3. (13)

Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general

If J1 = J1(t,w) denotes a first integral of (13) then the function J1

written in terms of the original variables

I1(x , x1) = J1

(
x ,

1

x1

)
(14)

is a common first integral of the system of vector fields {A,X1}.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 17 / 54



We have that X1 = ∂t is a Lie point symmetry of equation (12).

The associated reduced equation by means of the transformation
w = 1/x1 becomes

w ′(x) = a1(x)w(x)2 + a0(x)w(x)3. (13)

Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general

If J1 = J1(t,w) denotes a first integral of (13) then the function J1

written in terms of the original variables

I1(x , x1) = J1

(
x ,

1

x1

)
(14)

is a common first integral of the system of vector fields {A,X1}.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 17 / 54



We have that X1 = ∂t is a Lie point symmetry of equation (12).

The associated reduced equation by means of the transformation
w = 1/x1 becomes

w ′(x) = a1(x)w(x)2 + a0(x)w(x)3. (13)

Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general

If J1 = J1(t,w) denotes a first integral of (13) then the function J1

written in terms of the original variables

I1(x , x1) = J1

(
x ,

1

x1

)
(14)

is a common first integral of the system of vector fields {A,X1}.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 17 / 54



We have that X1 = ∂t is a Lie point symmetry of equation (12).

The associated reduced equation by means of the transformation
w = 1/x1 becomes

w ′(x) = a1(x)w(x)2 + a0(x)w(x)3. (13)

Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general

If J1 = J1(t,w) denotes a first integral of (13) then the function J1

written in terms of the original variables

I1(x , x1) = J1

(
x ,

1

x1

)
(14)

is a common first integral of the system of vector fields {A,X1}.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 17 / 54



We need to obtain an explicit solution w = H(t,K1) of equation (13)
from J1(t,w) = K1, where K1 ∈ R.

The general solution of equation (12) can be obtained after
evaluating the quadrature∫

dx

H(x ,K1)
= t + K2, K2 ∈ R. (15)

We look for λ-symmetries to equation (12).
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λ-symmetries of Liénard I-type equations

A pair (∂x , λ) is a λ-symmetry of the Liénard I-type equation if and
only if

λt + λxx1 − λx1

(
a1x1 + a0

)
+ λ2 = −a′1x1 − a′0 − a1λ. (16)

For second order ordinary differential equations, a first integral
I2 = I2(t, x , x1) is always associated to a λ-symmetry of the equation
of the form

(
∂x , λ

)
.

The first integral I1, given in (14), and the first integral I2, are
functionally independent if and only if

λ 6= A(Q1)/Q1 = −a1x1 + a0

x1
,

where Q1 = −x1 is the characteristic of the vector field X1 = ∂t .
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How can the λ-symmetry be used to compute I2 by quadratures?

We construct a solvable structure.

Consider X2 = ∂x + λ∂x1 .

It can be checked that
[X2,A] = λX2, (17)

[X1,A] = 0 and [X1,X2] =
λt

λx1 + a1x1 + a0
( X1 + X2 − A) . (18)

The ordered set of vector fields 〈X2,A,X1〉 is a solvable structure
with respect to X2 if and only if the following three conditions hold:

(a) [X2,A] ∈ span{X2},
(b) [A,X1] ∈ span{X2,A},
(c) [X2,X1] ∈ span{X2,A}.

Theorem

Then the ordered set of vector fields 〈X2,A,X1〉 is a solvable structure
with respect to X2 if and only if λt = 0.
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Let Ω = dt ∧ dx ∧ dx1 be the volume form on M(1).

If 〈X2,A,X1〉 is a solvable structure with respect to X2 then the
differential 1-form

ω2 =
AyX2yΩ

X1yAyX2yΩ
(19)

is locally exact, and a function I2 such that dI2 = ω2 is a common
first integral of the system of vector fields {A,X2}.

ω2 = dt − λ

(λ+ a1)x1 + a0
dx +

1

(λ+ a1)x1 + a0
dx1.

A primitive I2 = I2(t, x , x1) of ω2 verifies

∂I2
∂t

= 1,
∂I2
∂x

= − λ

(λ+ a1)x1 + a0
,

∂I2
∂x1

=
1

(λ+ a1)x1 + a0
.

(20)
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Geometric aspects of reduction of order.
Transactions of the American Mathematical Society 334 433–453
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1

(λ+ a1)x1 + a0
.

(20)
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Theorem

Let λ = λ(x , x1) be a function verifying

λxx1 − λx1

(
a1x1 + a0

)
+ λ2 = −a′1x1 − a′0 − a1λ

and such that λ 6= −a1x1 + a0

x1
. Then we have that

I2(t, x , x1) = t + F (x , x1), where

Fx = − λ

(λ+ a1)x1 + a0
and Fx1 =

1

(λ+ a1)x1 + a0
,

is a common first integral to the system of vector fields {X2,A}
functionally independent to I1.

A. Ruiz, C. Muriel 2018.

On the integrability of Liénard I-type equations via λ-symmetries and
solvable structures.

Journal of Applied Mathematics and Computation 339 888–898
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Example

x2 + 4x2x1 + (x4 + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X1 = ∂t as Lie point symmetry.

Reduced Abel equation:

w1 = 4x2w2 + x(x4 + 1)w3.

First integral of the Abel equation:

J1(x ,w) =
w
(
x + w(1 + x4)

)
x2w2 + (1 + x3w)2

+ arctan

(
1 + x3w

xw

)
. (22)

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 23 / 54



Example

x2 + 4x2x1 + (x4 + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X1 = ∂t as Lie point symmetry.

Reduced Abel equation:

w1 = 4x2w2 + x(x4 + 1)w3.

First integral of the Abel equation:

J1(x ,w) =
w
(
x + w(1 + x4)

)
x2w2 + (1 + x3w)2

+ arctan

(
1 + x3w

xw

)
. (22)

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 23 / 54



Example

x2 + 4x2x1 + (x4 + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X1 = ∂t as Lie point symmetry.

Reduced Abel equation:

w1 = 4x2w2 + x(x4 + 1)w3.

First integral of the Abel equation:

J1(x ,w) =
w
(
x + w(1 + x4)

)
x2w2 + (1 + x3w)2

+ arctan

(
1 + x3w

xw

)
. (22)

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 23 / 54



Example

x2 + 4x2x1 + (x4 + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X1 = ∂t as Lie point symmetry.

Reduced Abel equation:

w1 = 4x2w2 + x(x4 + 1)w3.

First integral of the Abel equation:

J1(x ,w) =
w
(
x + w(1 + x4)

)
x2w2 + (1 + x3w)2

+ arctan

(
1 + x3w

xw

)
. (22)

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 23 / 54



Example

x2 + 4x2x1 + (x4 + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X1 = ∂t as Lie point symmetry.

Reduced Abel equation:

w1 = 4x2w2 + x(x4 + 1)w3.

First integral of the Abel equation:

J1(x ,w) =
w
(
x + w(1 + x4)

)
x2w2 + (1 + x3w)2

+ arctan

(
1 + x3w

xw

)
. (22)

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 23 / 54



(∂x , λ) is a λ-symmetry of (21) for the function

λ =
x1

x
− 2x2.

First integral associated to the λ-symmetry:

I2(t, x , x1) = t + arctan

(
x1 + x3

x

)
. (23)

General solution:

x(t)2 =
4 cos2(K2 − t)

K̃1 − 4(K2 − t)− 2 sin(2(K2 − t))
.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 24 / 54



(∂x , λ) is a λ-symmetry of (21) for the function

λ =
x1

x
− 2x2.

First integral associated to the λ-symmetry:

I2(t, x , x1) = t + arctan

(
x1 + x3

x

)
. (23)

General solution:

x(t)2 =
4 cos2(K2 − t)

K̃1 − 4(K2 − t)− 2 sin(2(K2 − t))
.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 24 / 54



(∂x , λ) is a λ-symmetry of (21) for the function

λ =
x1

x
− 2x2.

First integral associated to the λ-symmetry:

I2(t, x , x1) = t + arctan

(
x1 + x3

x

)
. (23)

General solution:

x(t)2 =
4 cos2(K2 − t)

K̃1 − 4(K2 − t)− 2 sin(2(K2 − t))
.

A. Ruiz, C. Muriel (UCA) λ-symmetries and solvable structures September 5, 2018 24 / 54



A remarkable static Euler-Bernoulli beam equation

A remarkable static beam equation is

y4 = δy−5/3, δ = ±1. (24)

The Lie symmetry algebra is three-dimensional, isomorphic to sl(2,R)
and spanned by the vector fields

X1 = ∂x , X2 = x2∂x + 3xy∂y , X3 = x∂x +
3

2
y∂y . (25)

A.H. Bokhari, F.M. Mahomed, F.D. Zaman 2010.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation.
J. Math. Phys. 51 053517–053526

Since the Lie symmetry algebra sl(2,R) is nonsolvable, the standard
Lie reduction method cannot be used to stepwise reduce the order of
(24).
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By means of the transformation u = y2/3 the symmetry generators
(25) are respectively mapped into

X1 = ∂x , X2 = x2∂x + 2xu∂u, X3 = x∂x + u∂u. (26)

The corresponding transformed equation is

24u3u4 + 48u3u1u
2 + 36u2

2u
2−36u2u

2
1u+ 9u4

1−16 δ = 0, δ = ±1.
(27)

A set of joint invariants {s,w} for the involutive system of vector

fields
{

X
(3)
1 ,X

(3)
2 ,X

(3)
3

}
is given by

s = u2
1 − 2uu2 and w = u2u3. (28)

Consider the invariant obtained by derivation

w1 =
dw

ds
= −2u3u1 + uu4

u3
. (29)
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Equation (27) can be expressed in terms of the invariants {s,w ,w1}
as the following reduced equation:

2w1w =
3

8
s2 − 2

3
δ. (30)

This is a separable equation that can be integrated by quadratures
and whose solutions satisfy:

w(s)2 =
1

8
s3 − 2

3
δ s + K , K ∈ R. (31)

By isolating K in (31) and by writing the resulting expression in terms
of the coordinates {x , u, u1, u2, u3}, we obtain the following first
integral of the fourth-order equation (27):

I0 = u4u2
3 −

1

8

(
u2

1 − 2uu2

)3
+

2

3
δ
(
u2

1 − 2uu2

)
. (32)
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The reconstruction of the general solution of equation (27) can be
carried out by solving the third-order ODEs I0 = K0,K0 ∈ R, i.e:

u4u2
3 −

1

8

(
u2

1 − 2uu2

)3
+

2

3
δ
(
u2

1 − 2uu2

)
= K0, K0 ∈ R. (33)

The above equation inherits sl(2,R) as Lie symmetry algebra.

The family of third-order ODEs (33) can be locally written as the
canonical SL(2,R)-invariant third-order ODE:

u3 = − 1

8u2C (s;K0)
(s = u2

1 − 2uu2), (34)

where the function C = C (s;K0) satisfies

C (s;K0)2 =
1

8

(
s3 − 16

3
δ s + 8K0

) . (35)
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Three functionally independent first integrals to the family of third-order
ODEs (34) are:

I1 =
2u1C(s;K0)ψ1(s;K0) + ψ′1(s;K0)

2u1C(s;K0)ψ2(s;K0) + ψ′2(s;K0)
, I2 =

2(u1x − 2u)C(s;K0)ψ1(s;K0) + xψ′1(s;K0)

2(u1x − 2u)C(s;K0)ψ2(s;K0) + xψ′2(s;K0)
,

I3 =

(
C(s;K0)2(u1x − 2u)ψ2(s;K0) + xψ′2(s;K0)

)2

4C(s;K0)uW (ψ1, ψ2)(s;K0)
,

where s = u2
1 − 2uu2 and ψ1 and ψ2 are two linearly independent solutions

to(
s3 − 16

3
δ s + 8K0

)
ψ′′(s) +

1

2

(
3s2 − 16

3
δ

)
ψ′(s)− 1

2
s ψ(s) = 0. (36)

A. Ruiz, C. Muriel 2017.
First Integrals and Parametric Solutions of Third Order ODEs
Admitting sl(2,R).
J. Phys. A: Math. Theor. 50 205201
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Theorem

A complete set of first integrals {I0, I1, I2, I3} to equation (27) is given by

I0(x , u, u1, u2, u3) = u4u2
3 −

1

8

(
u2

1 − 2uu2

)3
+

2

3
δ
(
u2

1 − 2uu2

)
,

I1(x , u, u1, u2, u3) =
u1ψ1(s; I0)− 4u2u3ψ

′
1(s; I0)

u1ψ2(s; I0)− 4u2u3ψ′2(s; I0)
,

I2(x , u, u1, u2, u3) =
(u1x − 2u)ψ1(s; I0)− 4xu2u3ψ

′
1(s; I0)

(u1x − 2u)ψ2(s; I0)− 4xu2u3ψ′2(s; I0)
,

I3(x , u, u1, u2, u3) =
1

u

(
(u1x − 2u)ψ2(s; I0)− 4xu2u3ψ

′
2(s; I0)

)2
,

(37)

where ψ1 and ψ2 are two linearly independent solutions to the linear
second-order ODE (36) and s = u2

1 − 2uu2.
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The general solution to the fourth-order ODE (27) is implicitly
defined by

I1(x , u, u1, u2;K0) = K1, I2(x , u, u1, u2;K0) = K2, I3(x , u, u1, u2;K0) = K3, (38)

where Ki ∈ R for i = 0, 1, 2, 3.

The elimination of u1 and u2 from (38) in order to obtain a
closed-form solution of equation (27) seems to be impossible, because
both functions ψ1 and ψ2 and their derivatives are evaluated in
s = u2

1 − 2uu2.

We focus on obtaining the solution is parametric form.

We introduce a new parameter t such that s = s(t) is determined as
follows:

s ′(t) =
1

C (s(t;K0))
, (39)

where the prime symbol denotes derivation with respect to t.
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s = s(t) satisfies

s ′(t)2 = 8

(
s(t)3 − 16

3
δ s(t) + 8K0

)
. (40)

The general solution of equation (40) can be expressed as

s(t; t0,K0) =
1

2
℘ (t − t0; g2, g3) ,

where ℘(t) = ℘(t − t0; g2, g3) denotes the Weierstrass ℘-function
with invariants

g2 =
162

3
δ, g3 = −162K0. (41)

Let s(t;K0) be the particular solution to equation (40) corresponding
to t0 = 0.
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If ψ = ψ(s;K0) is a solution to the linear equation (36), then
φ(t;K0) = ψ(s(t;K0);K0) verifies the following Schrödinger-type
equation:

φ′′(t;K0)− 2℘

(
t;

162

3
δ,−162K0

)
φ(t;K0) = 0. (42)

Therefore, if ψ1 = ψ1(s;K0) and ψ2 = ψ2(s;K0) are two linearly
independent solutions to equation (36) then φ1(t;K0) = ψ1(s(t);K0)
and φ2(t;K0) = ψ2(s(t);K0) is a fundamental set of solutions to
equation (42).
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The implicit general solution (38) can be expressed as follows:

2u1φ1(t;K0) + φ′1(t;K0)

2u1φ2(t) + φ′2(t;K0)
= K1,

2(u1x − 2u)φ1(t;K0) + xφ′1(t;K0)

2(u1x − 2u)φ2(t;K0) + xφ′2(t;K0)
= K2,

(2(u1x − 2u)φ2(t;K0) + xφ2(t;K0))2

4uW (φ1, φ2)(t;K0)
= K3.

(43)

We can eliminate u1 to obtain the following parametrized general
solution to equation (27):

x(t) =
K3(K1 − K2) ( φ1(t;K0)− K2φ2(t;K0))

φ1(t;K0)− K1φ2(t;K0)
,

u(t) =
K3(K1 − K2)2

4
(
φ1(t;K0)− K1φ2(t;K0)

)2
,

where Ki ∈ R for i = 0, 1, 2, 3, K3 > 0, and K1 6= K2.
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Theorem

Let φ1 = φ1(t;K0) and φ2 = φ2(t;K0) be two linearly independent
solutions to the one-parameter family of Schrödinger-type equations (42)
such that W (φ1, φ2)(t;K0) = 1. Then the exact four-parameter solution
to the static Euler-Bernoulli beam equation (24) is given in parametric
form by

x(t) = K3(K1 − K2)
φ1(t;K0)− K2φ2(t;K0)

φ1(t;K0)− K1φ2(t;K0)
,

y(t) = ±

 K
1/2
3 ( K1 − K2)

2
(
φ1(t;K0)− K1φ2(t;K0)

)
3

,

(44)

where Ki ∈ R for i = 0, 1, 2, 3, K3 > 0, and K1 6= K2.
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The case K0 = ±16
27

These values of K0 correspond precisely to the cases in which the
discriminant g3

2 − 27g2
3 of the Weierstrass ℘-function

℘(t) = ℘(t; g2, g3) is equal to zero.

Implies δ = 1.

A fundamental set of solutions to the Schrödinger-type equation (42)
can be obtained in terms of elementary functions.
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If K0 = −16
27 then ℘(t; g2, g3) = −8

3 + 8 csc2
(
2
√

2t
)

and it can be
checked that two linearly independent solutions to the corresponding
equation (42) verifying W (φ1, φ2)(t) = 1 become

φ1(t) =

√
3

8
cot
(

2
√

2t
)

sin ( α(t))−
√

2

8
cos ( α(t)) ,

φ2(t) = csc
(

2
√

2t
)(

(3 +
√

6) cos ( β1(t)) + (3−
√

6) cos ( β2(t))
)
,

(45)

where

α(t) =
4
√

2t − π
√

6
, β1(t) =

4(
√

2−
√

3)t − π
√

6
, β2(t) =

4(
√

2 +
√

3)t − π
√

6
. (46)

If K0 = 16
27 then ℘(t; g2, g3) = 8

3 + 8 csch2
(
2
√

2t
)

and two linearly
independent solutions to the corresponding equation (42) satisfying
W (φ1, φ2)(t) = 1 become

φ1(t) = csch
(

2
√

2t
)(

(3 +
√

6) cosh ( β1(t)) + (3−
√

6) cosh ( β2(t))
)
,

φ2(t) =

√
3

8
coth

(
2
√

2t
)

sinh ( α(t))−
√

2

8
cosh ( α(t)) ,

(47)

where α(t), β1(t) and β2(t) are given in (46).
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Figure: δ = 1,K0 = − 16
27 ,K1 = −1,K2 = 3,K3 = 10, t ∈ (0.89, 6.2)
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Figure: δ = 1,K0 = − 16
27 ,K1 = −1,K2 = 3,K3 = 10, t ∈ (−11.3,−5.5)
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Figure: δ = 1,K0 = 16
27 ,K1 = 1,K2 = −3,K3 = 10, t ∈ (−15, 15)
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Figure: δ = 1,K0 = 16
27 ,K1 = 1,K2 = 3,K3 = 100, t ∈ (−15, 15)
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The case K0 = 0

It can be checked that a fundamental set of solutions {φ1, φ2} to
equation (42) such that W (φ1, φ2)(t) = 1 is given by

φ1(t) =
√
℘(t) and φ2(t) =

√
℘(t)

(
6

162δ

℘′(t)

℘(t)
+

12

162δ
ζ(t)

)
,

where ℘(t) = ℘(t; g2, 0) and ζ(t) = ζ(t; g2, 0) denote the Weierstrass

℘ and ζ functions with parameter g2 = 162

3 δ.

The following three-parameter family of solutions to equation (24) is
obtained:

x(t) = K3(K1 − K2)

(
162δ℘(t)− K2 ( 6℘′(t) + 12℘(t)ζ(t))

162δ℘(t)− K1 ( 6℘′(t) + 12℘(t)ζ(t))

)
,

y(t) = ±

(
k

1/2
3 (K1 − K2)162δ℘(t)

2
√
℘(t) ( 162δ℘(t)− K1 ( 6℘′(t) + 12ζ(t)℘(t)))

)3

,

where Ki ∈ R for i = 1, 2, 3, K3 > 0, K1 6= K2.
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Figure: δ = 1,K0 = 0,K1 = 0.3,K2 = −1,K3 = 1
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Figure: δ = 1,K0 = 0,K1 = −0.3,K2 = −10,K3 = 0.1
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Figure: δ = 1,K0 = 0,K1 = −0.3,K2 = 3,K3 = 0.3
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The case K0 6= ±16
27 and K0 6= 0

A fundamental set of solutions {φ1, φ2} to equation (42) such that
W (φ1, φ2)(t) = 1 is determined by

φ1(t) = ℘(t)exp(−tζ(γ))
σ(t)σ(γ)

σ(t − γ)
, φ2(t) =

1

℘′(γ)
exp(tζ(γ))

σ(t − γ)

σ(t)σ(γ)
,

where ℘(t) = ℘(t; g1, g2), ζ(t) = ζ(t; g1, g2), σ(t) = σ(t; g1, g2)
stand for the Weierstrass ℘-function, ζ-function and σ-function,
respectively, with parameters

g1 =
162

3
δ and g2 = −162K0,

and the value γ is such that ℘(γ) = 0.
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Theorem

The four-parameter general solution to the Euler-Bernoulli beam equation

y4 = δy−5/3, δ = ±1,

is given in parametric form through

x(t) = K3(K1 − K2)

(
σ(γ)2σ(t)2℘(t)℘′(γ)exp(−tζ(γ))− K2exp(tζ(γ))σ(t − γ)2

σ(γ)2σ(t)2℘(t)℘′(γ)exp(−tζ(γ))− K1exp(tζ(γ))σ(t − γ)2

)
,

y(t) = ±
(

K
1/2
3 (K1 − K2)σ(γ)σ(t)σ(γ − t)℘′(γ)

2 ( σ(γ)2σ(t)2℘(t)℘′(γ)exp(−tζ(γ))− K1exp(tζ(γ))σ(t − γ)2)

)3

,

where K1,K2,K3 ∈ R, K1 6= K2, K3 > 0, ℘(t) = ℘(t; g1, g2),
ζ(t) = ζ(t; g1, g2), σ(t) = σ(t; g1, g2) stand for the Weierstrass
℘-function, ζ-function and σ-function, respectively, with parameters
g1 = 162

3 δ and g2 = −162K0, K0 ∈ R \
{
±16

27 , 0
}

, and the value γ is such
that ℘(γ) = 0.
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Figure: δ = 1,K0 = 1,K1 = −1,K2 = −3,K3 = 10, t ∈ (−1.6, 1)
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Figure: δ = 1,K0 = 1,K1 = −1,K2 = −3,K3 = 10, t ∈ (1, 4)
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Figure: δ = 1,K0 = 0.1,K1 = −1,K2 = −3,K3 = 10, t ∈ (−100, 100)
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Figure: δ = 1,K0 = 0.01,K1 = −1,K2 = −3,K3 = 10, t ∈ (−100, 100)
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Figure: δ = 1,K0 = 1.1,K1 = −1,K2 = −3,K3 = 10, t ∈ (1.1, 3.6)
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A singular two-parameter family of solutions

We study the singular case in which the function C (s;K0)2 is not
defined.

That situation occurs if s = s0(K0), being s0(K0) one of the roots of

the polynomial s3 − 16

3
δ s + 8K0 = 0.

According to the value of s, s = s0(K0) yields the following
second-order equation

u2
1 − 2uu2 = s0(K0).

The solutions u = f (x) are of the form

f (x) = ax2 + bx + c , (48)

where the constants a, b and c satisfy the condition
s0(K0) = b2 − 4ac.
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It can be checked that (48) satisfies the equation (27) if and only if

3(b2 − 4ac)2 − 16

3
δ = 0. (49)

Solutions (48) verifying (49) correspond to solutions of (24) of the
form

y(x) = ±(ax2 + bx + c)3/2, (50)

when the constants a, b and c satisfy (49).
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