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Lie symmetries and Lie symmetry algebras

@ Let us consider an nth-order ODE

Xn = F(t,x,...,Xn—-1) (1)

defined for (t,x) € M, being M C R? some open and simply
connected subset.
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@ Let us consider an nth-order ODE

Xn = F(t,x,...,Xn—-1) (1)

defined for (t,x) € M, being M C R? some open and simply
connected subset.
@ t and x are the independent and dependent variables, respectively,

i .
andx,-:‘(’#)f fori=1,...,n.
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Lie symmetries and Lie symmetry algebras

@ Let us consider an nth-order ODE

Xn = F(t,x,...,Xn—-1) (1)
defined for (t,x) € M, being M C R? some open and simply
connected subset.

@ t and x are the independent and dependent variables, respectively,
and x; = Z’t)f fori=1,...,n

o M(" stands for the nth-order jet space, which has local coordinates
(t,x(M) = (t,x,x1, ..., Xn)-
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@ Let us consider an nth-order ODE

Xn = F(t,x,...,Xn—-1) (1)
defined for (t,x) € M, being M C R? some open and simply
connected subset.

@ t and x are the independent and dependent variables, respectively,
and x; = Z’t)f fori=1,...,n

o M(" stands for the nth-order jet space, which has local coordinates
(t,x(M) = (t,x,x1, ..., Xn)-

@ The total derivative operator

Dt:at+xlax+x2axl+"'+Xnaxn,1+"'
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Lie symmetries and Lie symmetry algebras

@ Let us consider an nth-order ODE

Xn = F(t,x,...,Xn—-1) (1)
defined for (t,x) € M, being M C R? some open and simply
connected subset.

@ t and x are the independent and dependent variables, respectively,

and x; = Zit)f fori=1,...,n
o M(" stands for the nth-order jet space, which has local coordinates
(tvx(n)) = (t’X7X17 s aXn)'

@ The total derivative operator

D; = at“‘xlax"i‘)anl + "'+Xnax,,,1 + -
@ Vector field associated to equation (1):

A =0 + x10x + X0y, + -+ F(t,x,..., Xp-1)0x,_;- (2)
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Definition (standard prolongation of vector fields)

Let X = &(t, x)0¢ + n(t, x)Ox be a smooth vector field defined on M. The
(standard) nth-order prolongation of X is the vector field

X(n) = X + Z n(l)(t’ X(i))ax,'a

i=1

defined on I\/l(”), where

7(t,x) = Dy (D (e,x0V)) — xD(€(tx)), i=1,....n.

[3 P. J. Olver 1986.
Applications of Lie groups to differential equations.

Springer, New York.
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Definition
A smooth vector field X = &(t, x)0¢ + 1(t, x)Ox defined on M is a Lie
point symmetry of equation (1) if and only if

o

X (xy — F(t,%, .. xn-1)) =0 if xp = F(t,%,...,xn-1), (3)

[§ P.J. Olver 1986.
Applications of Lie groups to differential equations.

Springer, New York.
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Definition
A smooth vector field X = &(t, x)0¢ + 1(t, x)Ox defined on M is a Lie
point symmetry of equation (1) if and only if

o

X (xy — F(t,%, .. xn-1)) =0 if xp = F(t,%,...,xn-1), (3)

@ or equivalently
(X" Al = —A(A. (4)

[§ P.J. Olver 1986.
Applications of Lie groups to differential equations.

Springer, New York.
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Use of a Lie point symmetry to reduce the order of equation (1)

@ In the neighbourhood of a point where X does not vanish there exist
two functions z = z(t, x) and a = «(t, x) such that

X(z)=0 and X(a)=1.
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Use of a Lie point symmetry to reduce the order of equation (1)

@ In the neighbourhood of a point where X does not vanish there exist
two functions z = z(t, x) and a = «(t, x) such that

X(z)=0 and X(a)=1.

da

o Consider wj_1 = 7, for i =1,...,n, where wo = w.
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Use of a Lie point symmetry to reduce the order of equation (1)

@ In the neighbourhood of a point where X does not vanish there exist
two functions z = z(t, x) and a = «(t, x) such that

X(z)=0 and X(a)=1.

. 1 .
o Consider w;_1 = %, fori=1,...,n, where wyp = w.

o Then we have that X()(w;_1) =0, for i =1,...,n.
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Use of a Lie point symmetry to reduce the order of equation (1)

@ In the neighbourhood of a point where X does not vanish there exist
two functions z = z(t, x) and a = «(t, x) such that

X(z)=0 and X(a)=1.

dia
dz'’
o Then we have that X()(w;_1) =0, for i =1,...,n.

@ Consider the local change of variables

o Consider w;_1 = fori=1,...,n, where wyp = w.

o(t, %, ... xn) = (z,a, w, ..., Wp_1). (5)
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@ Suppose that equation (1) becomes

F(y7a7w)"',Wn—1):O (6)

in the new variables.
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@ Suppose that equation (1) becomes

F(y7a7w)"',Wn—1):O (6)

in the new variables.

@ The vector field X(") in the new variables becomes
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@ Suppose that equation (1) becomes

F(y7a7w)"'7Wn—1):O (6)

in the new variables.

@ The vector field X(") in the new variables becomes
X() =9,,
o therefore the infinitesimal criteria establishes that

oF ~
— =0 if F=0.
da I
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@ Suppose that equation (1) becomes

F(y7a7w)"'7Wn—1):O (6)

in the new variables.

@ The vector field X(") in the new variables becomes
X() =9,,

o therefore the infinitesimal criteria establishes that

oF ~
— =0 if F=0.
Oa I
@ We obtain a reduced equation
:E(z, W, ,wp—1) =0. (7)
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o Remark: If n = 1 then we have that F(z, w) = 0, hence we can

locally obtain
da (2)
w=—= .
dz

In this case the solution can be obtained by a single quadrature:

a:/g(z)dz—i—C7 CeR
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o Remark: If n = 1 then we have that F(z, w) = 0, hence we can

locally obtain
w= da _ (2)
a8V

In this case the solution can be obtained by a single quadrature:
a:/g(z)dz—i—C7 CeR

o Recovery of solutions
Suppose that w = H(z; Gy, ..., C,—1) is the general solution of (7).
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o Remark: If n = 1 then we have that F(z, w) = 0, hence we can

locally obtain
w= da _ (2)
a8V

In this case the solution can be obtained by a single quadrature:
az/g(z)dz—i—C, CeR.

o Recovery of solutions
Suppose that w = H(z; Gy, ..., C,—1) is the general solution of (7).

@ Auxiliary equation:

w(t, x,x1) = H(z(t, x); Ci,..., Cho1),
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o Remark: If n = 1 then we have that F(z, w) = 0, hence we can

locally obtain
w= da _ (2)
a8V

In this case the solution can be obtained by a single quadrature:
az/g(z)dz—i—C, CeR.

o Recovery of solutions
Suppose that w = H(z; Gy, ..., C,—1) is the general solution of (7).

@ Auxiliary equation:
w(t, x,x1) = H(z(t, x); Ci,..., Cho1),

@ X is a Lie symmetry of the auxiliary equation.
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o Let £ be the set of Lie symmetries of equation (1).
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o Let £ be the set of Lie symmetries of equation (1).
@ Then we have that:
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o Let £ be the set of Lie symmetries of equation (1).
@ Then we have that:
Q IfX,;YeLand a,B8 € R then aX + Y € L.
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o Let £ be the set of Lie symmetries of equation (1).
@ Then we have that:

Q IfX,;YeLand a,B8 € R then aX + Y € L.
Q If X,Y € L then [X,Y] € L.
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o Let £ be the set of Lie symmetries of equation (1).
@ Then we have that:
Q IfX,;YeLand a,B8 € R then aX + Y € L.
Q If X,Y € L then [X,Y] € L.
@ Therefore £ has the structure of real Lie algebra with respect to the
usual Lie bracket of vector fields.
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Let £ be the set of Lie symmetries of equation (1).
@ Then we have that:
Q IfX,;YeLand a,B8 € R then aX + Y € L.
Q If X,Y € L then [X,Y] € L.
Therefore £ has the structure of real Lie algebra with respect to the
usual Lie bracket of vector fields.

o L is called the Lie symmetry algebra of equation (1).
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Use of a Lie symmetry algebra to reduce the order of equation (1)
o Assume that £ # () and dim(L) = k, 2 < k < n.
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Use of a Lie symmetry algebra to reduce the order of equation (1)
o Assume that £ # () and dim(L) = k, 2 < k < n.
@ By using X; € £ we can reduce the order of equation (1) by one:

F(z,w,...,wp_1)=0.
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Use of a Lie symmetry algebra to reduce the order of equation (1)
o Assume that £ # () and dim(L) = k, 2 < k < n.
@ By using X; € £ we can reduce the order of equation (1) by one:

F(z,w,...,wp_1)=0.

@ We would like to use another Lie symmetry X, € £, Xy # Xy, to
reduce the order again.
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Use of a Lie symmetry algebra to reduce the order of equation (1)
o Assume that £ # () and dim(L) = k, 2 < k < n.

@ By using X; € £ we can reduce the order of equation (1) by one:
F(z,w,...,wp_1)=0.

@ We would like to use another Lie symmetry X, € £, Xy # Xy, to
reduce the order again.

@ The vector field Xgl) becomes in terms of the coordinates (z, «, w):

X = xM(2)0, + X ()d + X (w)d,.
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Use of a Lie symmetry algebra to reduce the order of equation (1)
o Assume that £ # () and dim(L) = k, 2 < k < n.
@ By using X; € £ we can reduce the order of equation (1) by one:

F(z,w,...,wp_1)=0.

@ We would like to use another Lie symmetry X, € £, Xy # Xy, to
reduce the order again.

@ The vector field Xgl) becomes in terms of the coordinates (z, «, w):

X = xM(2)0, + X ()d + X (w)d,.

@ We have to project Xgl) to the space of coordinates (y, w).
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o For that O ®
0X57(2) _ 0 and 0X5 7 (w) _

Oa Oa 0,
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o For that
xXz) _ o oXPw)
oo 0 an da
@ which happen if and only if

0,

[Xl,XQ] = CX1, ceR.
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o For that
xXz) _ o oXPw)
oo 0 an da
@ which happen if and only if

0,

[Xl,XQ] = CX1, ceR.

@ Let us assume that L is solvable, i.e, it admits a decomposition of the

form
(X1) € (X1, X2) <+ (X, .., X))
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o For that
xXz) _ o oXPw)
oo 0 an da
@ which happen if and only if

0,

[Xl,XQ] = CX1, ceR.

@ Let us assume that L is solvable, i.e, it admits a decomposition of the

form
(X1) € (X1, X2) <+ (X, .., X))

@ Then the order of the equation (1) can be stepwise reduced by k.
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A-symmetries

Definition (A-prolongation of vector fields)

For a given smooth vector field X = £(t, x)0: + n(t, x)Ox defined on M
and for an arbitrary function X\ € C*(M™), the \-prolongation of order n

of X is the vector field

XN = (¢, )0, + 3 pPO (e, xD)a, (8)
i=0

defined on M(") where n[/\’(o)](t,x) =n(t,x) and, for 1 < <n,

(e, xD) = D, ( n[A’(’fl)](f7X(’f1))) — D¢(&(t, x))x; 9)
_|_)\ ( n[A’(’_l)](t’X(’_l)) — §(t7 X)X,) .

v

@ Muriel, C. and Romero, J. L. 2001.
New methods of reduction for ordinary differential equations.

IMA Journal of Applied Mathematics 66 111-125
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Definition
A pair (X, \), where X = &(t, x)0¢ + 1(t, x)0x is a smooth vector field
defined on M and A € C® (M), is a A-symmetry of equation (1) if and
only if

o

XM — F(t,x,. .., xp-1)) =0 if x5 = F(t,%,...,%p_1), (10)

@ Muriel, C. and Romero, J. L. 2001.
New methods of reduction for ordinary differential equations.

IMA Journal of Applied Mathematics 66 111-125

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures September 5, 2018 13 / 54



Definition
A pair (X, \), where X = &(t, x)0¢ + n(t, x)0x is a smooth vector field
defined on M and A € C® (M), is a A-symmetry of equation (1) if and
only if

o

XM — F(t,x,. .., xp-1)) =0 if x5 = F(t,%,...,%p_1), (10)

@ or equivalently
X (=D Al = —(A(€) + AE)A + AXP (=] (11)

@ Muriel, C. and Romero, J. L. 2001.
New methods of reduction for ordinary differential equations.

IMA Journal of Applied Mathematics 66 111-125

September 5, 2018 13 / 54
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Use of \-symmetries to reduce the order of equation (1)

@ Suppose that (X, ) is a A-symmetry of equation (1).
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Use of \-symmetries to reduce the order of equation (1)
@ Suppose that (X, ) is a A-symmetry of equation (1).
o Let y = y(t,x) and w = w(t, x, x1) be two functions such that
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Use of \-symmetries to reduce the order of equation (1)
@ Suppose that (X, ) is a A-symmetry of equation (1).
o Let y = y(t,x) and w = w(t, x, x1) be two functions such that

o (IBDP) If we consider the invariants obtained by derivation

di—Dw

:W, i:1,...,n—1,

Wi

then we have that

xwy =0, i=1,...,n—1.

goeeey
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Use of \-symmetries to reduce the order of equation (1)
@ Suppose that (X, ) is a A-symmetry of equation (1).
o Let y = y(t,x) and w = w(t, x, x1) be two functions such that

X[’\’(l)](y) = X[’\v(l)](w) =0.
o (IBDP) If we consider the invariants obtained by derivation

di—Dw

:W, i:1,...,n—1,

Wi

then we have that
xMO(w)y=0, i=1,...,n—1.
@ Consider the local change of variables
o(t, x,x1, ..y xn) = (v, Byw, ..., wp_1),

where 3 is some function such that X(3) # 0.
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@ By the invariance criteria we obtain a reduced equation of the form

F(y,w,...,wp—1) =0.
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@ By the invariance criteria we obtain a reduced equation of the form

F(y,w,...,wp—1) =0.

@ Suppose that w = H(y; Cy,..., C,—1) is the general solution of the
above reduced equation.
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@ By the invariance criteria we obtain a reduced equation of the form

F(y,w,...,wp—1) =0.

@ Suppose that w = H(y; Cy,..., C,—1) is the general solution of the
above reduced equation.

o Auxiliary equation:

w(t,x,x1) = H(y(t,x); C1,..., Ch-1).
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Liénard I-type equation

@ The Liénard I-type equation

Xo + al(x)xl + ao(X) =0, (]_2)
where a; and ag are arbitrary smooth functions of the dependent

variable x and x; = Z;’,-‘ fori=1,2.
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Liénard I-type equation

@ The Liénard I-type equation

Xo + al(x)xl + ao(X) =0, (]_2)

where a; and ag are arbitrary smooth functions of the dependent

variable x and x; = Z;’,-‘ fori=1,2.

@ A =0+ x10x — (a1(x)x1 + a0(x))0x, -
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Liénard I-type equation

@ The Liénard I-type equation

Xo + al(x)xl + ao(X) =0, (]_2)

where a; and ag are arbitrary smooth functions of the dependent

variable x and x; = Z;’,-‘ fori=1,2.

@ A=0;+x105 — (al(x)xl + ao(X))axl.
e Equation (12) models some famous nonlinear oscillators such as the

van der Pol equation, the Duffing oscillator, the Helmholtz oscillator,
etc.
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Liénard I-type equation

@ The Liénard I-type equation

Xo + al(x)xl + ao(X) =0, (]_2)

where a; and ag are arbitrary smooth functions of the dependent

variable x and x; = Z;’,-‘ fori=1,2.

@ A=0;+x105 — (al(x)xl + ao(X))axl.
e Equation (12) models some famous nonlinear oscillators such as the

van der Pol equation, the Duffing oscillator, the Helmholtz oscillator,
etc.

@ |t appears as reductions of nonlinear partial differential equations
(PDEs) such as the Fisher equation, the Burgers-Korteweg-de Vries
equation, and the Burgers-Huxley equation.
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e We have that X; = 0; is a Lie point symmetry of equation (12).
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e We have that X; = 0; is a Lie point symmetry of equation (12).

@ The associated reduced equation by means of the transformation
w = 1/x; becomes

w'(x) = ar(x)w(x)? + ao(x)w(x)3. (13)
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e We have that X; = 0; is a Lie point symmetry of equation (12).

@ The associated reduced equation by means of the transformation
w = 1/x; becomes

w'(x) = ar(x)w(x)? + ao(x)w(x)3. (13)

e Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general
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e We have that X; = 0; is a Lie point symmetry of equation (12).

@ The associated reduced equation by means of the transformation
w = 1/x; becomes

w'(x) = ar(x)w(x)? + ao(x)w(x)3. (13)

e Equation (13) is an Abel equation of the first kind and its
integrability by quadratures cannot be guaranteed in general

o If J; = Ji(t, w) denotes a first integral of (13) then the function J;
written in terms of the original variables

h(x,x1) = s <x, ;) (14)

is a common first integral of the system of vector fields {A, X;}.
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@ We need to obtain an explicit solution w = H(t, K1) of equation (13)
from Ji(t,w) = Ki, where K; € R.
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@ We need to obtain an explicit solution w = H(t, K1) of equation (13)
from Ji(t,w) = Ki, where K; € R.

@ The general solution of equation (12) can be obtained after
evaluating the quadrature

dx
T —t1+ K, KycR. 1
/H(X, D) + Ko, K e (15)
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@ We need to obtain an explicit solution w = H(t, K1) of equation (13)
from Ji(t,w) = Ki, where K; € R.

@ The general solution of equation (12) can be obtained after
evaluating the quadrature

dx
T —t1+ K, KycR. 1
/H(X, D) + Ko, K e (15)

@ We look for A-symmetries to equation (12).
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A-symmetries of Liénard I-type equations

@ A pair (O, A) is a A-symmetry of the Liénard I-type equation if and
only if

At + Axxy — /\x1 (31X1 + ao) + A\ = —3,1X1 — 86 —ai . (16)
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A-symmetries of Liénard I-type equations

@ A pair (O, A) is a A-symmetry of the Liénard I-type equation if and
only if

At + Axxy — /\x1 (31X1 + ao) + A\ = —3,1X1 — 86 —ai . (16)

@ For second order ordinary differential equations, a first integral

I = h(t, x,x1) is always associated to a A\-symmetry of the equation
of the form (O, \).
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A-symmetries of Liénard I-type equations

@ A pair (O, A) is a A-symmetry of the Liénard I-type equation if and
only if

At + Axxy — /\x1 (31X1 + ao) + A\ = —a,1X1 — 86 —ai . (16)

@ For second order ordinary differential equations, a first integral

I = h(t, x,x1) is always associated to a A\-symmetry of the equation
of the form (O, \).

@ The first integral /1, given in (14), and the first integral , are
functionally independent if and only if

aixiy + a
AEA(Q)/ Q=TT
X1
where Q1 = —xq is the characteristic of the vector field X; = 0;.
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How can the \-symmetry be used to compute /» by quadratures?

@ We construct a solvable structure.
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How can the \-symmetry be used to compute /» by quadratures?

@ We construct a solvable structure.
o Consider Xy = Ox + A0y,
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How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[X1,A] =0 and [Xi,Xo] = ( X1+ Xz —A). (18)
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How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[X1,A] =0 and [Xi,Xo] = ( X1+ Xz —A). (18)

@ The ordered set of vector fields (X,, A, X1) is a solvable structure
with respect to X5 if and only if the following three conditions hold:

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures September 5, 2018 20 / 54



How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[X1,A] =0 and [Xi,Xo] = ( X1+ Xz —A). (18)

@ The ordered set of vector fields (X,, A, X1) is a solvable structure

with respect to X5 if and only if the following three conditions hold:
(a) [Xz,A] € span{X,},
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How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[X1,A] =0 and [Xi,Xo] = ( X1+ Xz —A). (18)

@ The ordered set of vector fields (X,, A, X1) is a solvable structure
with respect to X5 if and only if the following three conditions hold:
(a) [Xz,A] € span{X,},
(b) [A,Xq] € span{Xy, A},
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How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[Xl,A] =0 and [Xl,XQ] = ( X1—|-X2—A). (18)
@ The ordered set of vector fields (X,, A, X1) is a solvable structure
with respect to X5 if and only if the following three conditions hold:
(a) [Xz,A] € span{X,},
(b) [A,Xq] € span{Xy, A},
(c) [X2,Xy] € span{Xz,A}.
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How can the \-symmetry be used to compute /» by quadratures?
@ We construct a solvable structure.
o Consider Xy = Ox + A0y,

@ It can be checked that
[X2, A] = AXz, (17)

At
Ax1 + aix1 + ag

[Xl,A] =0 and [Xl,XQ]: ( X1—|-X2—A). (18)
@ The ordered set of vector fields (X,, A, X1) is a solvable structure
with respect to X5 if and only if the following three conditions hold:
(a) [Xz,A] € span{X,},
(b) [A,Xq] € span{Xy, A},
(c) [X2,Xy] € span{Xz,A}.

Then the ordered set of vector fields (X2, A, X1) is a solvable structure
with respect to Xy if and only if Ay = 0.
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e Let Q = dt A dx A dx; be the volume form on M(1).
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e Let Q = dt A dx A dx; be the volume form on M(1).

o If (X2,A,X;) is a solvable structure with respect to X, then the

differential 1-form
A_X5.Q

T X1 A X9
is locally exact, and a function / such that d, = w5 is a common
first integral of the system of vector fields {A, X2}.

w2 (19)
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e Let Q = dt A dx A dx; be the volume form on M(1).
o If (X2, A, X;) is a solvable structure with respect to X, then the

differential 1-form
A_X,_.Q

T X1 A X2.Q
is locally exact, and a function /, such that dl, = w, is a common
first integral of the system of vector fields {A, X2}.

& J. Sherring, G. Prince 1992.
Geometric aspects of reduction of order.
Transactions of the American Mathematical Society 334 433—-453

wo (19)
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e Let Q = dt A dx A dx; be the volume form on M(1).

o If (X2,A,X;) is a solvable structure with respect to X, then the

differential 1-form
A_X5.Q

T X1 A X9
is locally exact, and a function / such that d, = w5 is a common
first integral of the system of vector fields {A, X2}.

w2 (19)

A dx + !
(A+a1)x1 + ao (A+a1)x1 + a0

e A primitive b = h(t, x, x1) of wy verifies

dX1.

wo = dt —

oh Oh A oh 1

E_ ’ 87_7(>\+31)X1+ao’ 87x1 ()\+al)x1—|—ao'
(20)
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Theorem

Let A = \(x, x1) be a function verifying

AxX1 — Ay (alxl + ao) + 22 = —a'lxl — 36 —a A
and such that \ #£ —w. Then we have that
X1

h(t,x,x1) =t + F(x,x1), where

A
fk=—+————— and F, =

(A + a1)x1 + ao (A +a1)x1 + a0’

is a common first integral to the system of vector fields {X,, A}
functionally independent to 1.

[3] A. Ruiz, C. Muriel 2018.

On the integrability of Liénard I-type equations via A-symmetries and
solvable structures.

Journal of Applied Mathematics and Computation 339 888-898
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Example

xo +4x°x1 + (x* + 1)x = 0. (21)
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xo +4x°x1 + (x* + 1)x = 0. (21)

@ A case of a generalized force-free Duffing-Van der Pol equation.
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xo +4x°x1 + (x* + 1)x = 0. (21)
@ A case of a generalized force-free Duffing-Van der Pol equation.

e Equation (21) only admits X; = 0; as Lie point symmetry.
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xo +4x°x1 + (x* + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X; = 0; as Lie point symmetry.

Reduced Abel equation:

w = 4x°w? + x(x* + 1)w?.
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xo +4x°x1 + (x* + 1)x = 0. (21)

A case of a generalized force-free Duffing-Van der Pol equation.

Equation (21) only admits X; = 0; as Lie point symmetry.
Reduced Abel equation:

w = 4x°w? + x(x* + 1)w?.

First integral of the Abel equation:

w( x+w(l+x%)) 1+x3w
= — . 22
A w) x2w? + (14 x3w)? +arctan Xw (22)
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@ (Ox, A) is a A-symmetry of (21) for the function

=21 0x2,
X
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@ (Ox, A) is a A-symmetry of (21) for the function

=21 0x2,
X

o First integral associated to the A-symmetry:

X1 +x3>

h(t,x,x1) = t + arctan <
X
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@ (Ox, A) is a A-symmetry of (21) for the function

=21 0x2,
X

o First integral associated to the A-symmetry:

3
X1+ X
h(t,x,x1) =t + arctan < 1)
X
@ General solution:

4cos?(Ky — t)
Ky —4(Ky — t) — 2sin(2(Kz — t))

x(t)? =
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A remarkable static Euler-Bernoulli beam equation

@ A remarkable static beam equation is

va =0y™23,  §=+1. (24)
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A remarkable static Euler-Bernoulli beam equation

@ A remarkable static beam equation is
va =0y™23,  §=+1. (24)

@ The Lie symmetry algebra is three-dimensional, isomorphic to s((2, R)
and spanned by the vector fields

X1 =0y, Xo=x20x+3xyd,, X3=x0x+ gyay. (25)
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A remarkable static Euler-Bernoulli beam equation

@ A remarkable static beam equation is
va =0y™23,  §=+1. (24)

@ The Lie symmetry algebra is three-dimensional, isomorphic to s((2, R)
and spanned by the vector fields

X1 =0y, Xo=x20x+3xyd,, X3=x0x+ gyay. (25)

@ A.H. Bokhari, F.M. Mahomed, F.D. Zaman 2010.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation.
J. Math. Phys. 51 053517-053526
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A remarkable static Euler-Bernoulli beam equation

@ A remarkable static beam equation is
va =0y™23,  §=+1. (24)

@ The Lie symmetry algebra is three-dimensional, isomorphic to s((2, R)
and spanned by the vector fields

X1 =0y, Xo=x20x+3xyd,, X3=x0x+ gyay. (25)

[8 A.H. Bokhari, F.M. Mahomed, F.D. Zaman 2010.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation.
J. Math. Phys. 51 053517-053526
@ Since the Lie symmetry algebra s[(2,R) is nonsolvable, the standard
Lie reduction method cannot be used to stepwise reduce the order of
(24).
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@ By means of the transformation u = y2/3 the symmetry generators
(25) are respectively mapped into

X; =0y, Xo=x20+2xud,, Xz=x0x+ud,  (26)
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@ By means of the transformation u = y2/3 the symmetry generators
(25) are respectively mapped into

X1 =0y, Xo=x20x+2xud,, Xz=x0y+ud,  (26)
@ The corresponding transformed equation is

2413 ug + 48uz i u? + 3613 u? — 36upuu+9uf — 166 = 0, 0= =1
(27)
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@ By means of the transformation u = y2/3 the symmetry generators
(25) are respectively mapped into

X1 =0y, Xo=x20x+2xud,, Xz=x0y+ud,  (26)
@ The corresponding transformed equation is

2413 ug + 48uz i u? + 3613 u? — 36upuu+9uf — 166 = 0, 0= =1
(27)
@ A set of joint invariants {s, w} for the involutive system of vector
fields {x§3),x§3),xg3)} is given by

s=u?>—2uu, and w = ulus. 28
1

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures September 5, 2018 26 / 54



@ By means of the transformation u = y2/3 the symmetry generators
(25) are respectively mapped into

X1 =0y, Xo=x20x+2xud,, Xz=x0y+ud,  (26)
@ The corresponding transformed equation is

2413 ug + 48uz i u? + 3613 u? — 36upuu+9uf — 166 = 0, 0= =1
(27)
@ A set of joint invariants {s, w} for the involutive system of vector
fields {x§3),x§3),xg3)} is given by

s=u} —2uuy and w=ilus. (28)

@ Consider the invariant obtained by derivation

dw 2uzu] + Uy
w=—=——=—-——
ds us
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e Equation (27) can be expressed in terms of the invariants {s, w, w; }
as the following reduced equation:

3, 2
2 =_s"— -4
wiw = 25" — 3 (30)
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e Equation (27) can be expressed in terms of the invariants {s, w, w; }
as the following reduced equation:
3, 2
2wiw = —s° — = 4. 30
W =gt -3 (30)
@ This is a separable equation that can be integrated by quadratures
and whose solutions satisfy:
13

2
W(s)2:§s —30s+K, K e R. (31)
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e Equation (27) can be expressed in terms of the invariants {s, w, w; }
as the following reduced equation:
3, 2
2 =—-s"—-0. 30
wiw = 25 — 2 (30)
@ This is a separable equation that can be integrated by quadratures
and whose solutions satisfy:
2 _lg 2
@ By isolating K in (31) and by writing the resulting expression in terms
of the coordinates {x, u, u1, up, u3}, we obtain the following first
integral of the fourth-order equation (27):

lo = u*u? — é (uf - 2uuz)3 + %(5 (u% — 2uup) . (32)
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@ The reconstruction of the general solution of equation (27) can be
carried out by solving the third-order ODEs Iy = Kp, Ko € R, i.e:

1 2
u4u§ 3 (u% — 2uu2)3 + 3 5 (u% _ 2uuz) = Ko, Ko € R. (33)
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@ The reconstruction of the general solution of equation (27) can be
carried out by solving the third-order ODEs Iy = Kp, Ko € R, i.e:

1 2
u4u§ 3 (u% — 2uu2)3 + 3 5 (u% _ 2uuz) = Ko, Ko € R. (33)

@ The above equation inherits s[(2,R) as Lie symmetry algebra.
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@ The reconstruction of the general solution of equation (27) can be
carried out by solving the third-order ODEs Iy = Kp, Ko € R, i.e:

1 2
u4u§ 3 (u% — 2uu2)3 + 3 5 (u% _ 2uuz) = Ko, Ko € R. (33)

@ The above equation inherits s[(2,R) as Lie symmetry algebra.

@ The family of third-order ODEs (33) can be locally written as the
canonical SL(2, R)-invariant third-order ODE:

1

S — =2 4
8U2C(S; KO) (5 ty UU2), (3 )

usz =

where the function C = C(s; Kp) satisfies

1

C(S;K0)2: 16 .
8 (53— 355+8K0>
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Three functionally independent first integrals to the family of third-order
ODEs (34) are:

_ 2u1C(s; Ko)yu(si Ko) + ¥4 (s Ko) _ 2(ux = 2u)C(s; Ko)vha(s; Ko) + x¢i (s; Ko)
2u1 C(s; Ko)a(s; Ko) + 5(s; Ko) 2 2(ux — 2u)C(s; Ko)wa(s; Ko) + x9h(s; Ko)’

1

(C(s: Ko)2(u1x — 2u)epa(s; Ko) + xepj(s; Ko))2
4 C(s; Ko)uW (11, ¥2)(s; Ko) '

where s = u% — 2uup and 1 and 1, are two linearly independent solutions
to

16

(53 - 1736 5s+ 8Ko> V() + <352 - 35> ¥/(s) ~ 5su(s) = 0. (36)

[§ A. Ruiz, C. Muriel 2017.
First Integrals and Parametric Solutions of Third Order ODEs
Admitting s((2,R).
J. Phys. A: Math. Theor. 50 205201

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures September 5, 2018



A complete set of first integrals {ly, h, h, I3} to equation (27) is given by

1 2
lo(x, u, ur, up, u3) = u*ul — 3 (uf — 2uuz)3 + 3 0 (u% — 2uuz) ,

utpi(s; o) — 4uPusipi(s; )
ulz/)z(s; /0) = 4U2U3’l/}§(5; Io)’

h(x, u,u1, up, u3) =
(37)

(u1x — 2u)Y1(s; lo) — Axu? uzdl(s; Io)

(urx = 2u)a(s; o) — dxuush(s; p)’

l2(Xa u, uy, us, U3) —

B(x, u,ur,u, u3) =

<=

((u1x — 2u)a(s; o) — AxuPush(s; Io))2 )

where 11 and 1y are two linearly independent solutions to the linear
second-order ODE (36) and s = u? — 2uus.
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@ The general solution to the fourth-order ODE (27) is implicitly
defined by

h(x, u,u1, u2; Ko) = K1, h(x,u,u1,u; Ko) = Kz, B(x,u, ur, u2; Ko) = K3, (38)

where K; € R for i =0,1,2,3.
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@ The general solution to the fourth-order ODE (27) is implicitly
defined by

hi(x, u, ut, u2; Ko) = Ki, b(x,u, u1, u2; Ko) = Kz, (x, u, u1, u2; Ko) = K, (38)
where K; € R for i =0,1,2, 3.
@ The elimination of vy and up from (38) in order to obtain a
closed-form solution of equation (27) seems to be impossible, because

both functions 1 and 1 and their derivatives are evaluated in
s = u? —2uus.
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@ The general solution to the fourth-order ODE (27) is implicitly
defined by

h(x, u,u1, u2; Ko) = K1, h(x,u,u1,u; Ko) = Kz, B(x,u, ur, u2; Ko) = K3, (38)

where K; € R for i =0,1,2,3.

@ The elimination of vy and up from (38) in order to obtain a
closed-form solution of equation (27) seems to be impossible, because
both functions 1 and 1 and their derivatives are evaluated in
s = u? —2uus.

@ We focus on obtaining the solution is parametric form.
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@ The general solution to the fourth-order ODE (27) is implicitly
defined by

h(x, u,u1, u2; Ko) = K1, h(x,u,u1,u; Ko) = Kz, B(x,u, ur, u2; Ko) = K3, (38)

where K; € R for i =0,1,2, 3.

@ The elimination of vy and up from (38) in order to obtain a
closed-form solution of equation (27) seems to be impossible, because
both functions 1 and 1 and their derivatives are evaluated in
s = u? —2uus.

@ We focus on obtaining the solution is parametric form.

e We introduce a new parameter t such that s = s(t) is determined as

follows:
1

*) = )

where the prime symbol denotes derivation with respect to t.

(39)
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@ s = s(t) satisfies
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@ s = s(t) satisfies

1 )\2 3 16

s'(t)° =8| s(t) —?5s(t)+8Ko . (40)
@ The general solution of equation (40) can be expressed as

1
S(t; t(), KO) = Ep(t - tO;g27g3)7

where p(t) = p(t — to; g2, g3) denotes the Weierstrass p-function
with invariants
16

=5, g3 = —16%Ko. (41)

& = 3
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@ s = s(t) satisfies

1 )\2 3 16

s'(t)° =8| s(t) —?5s(t)+8Ko . (40)
@ The general solution of equation (40) can be expressed as

1
S(t; t(), KO) = Ep(t - tO;g27g3)7

where p(t) = p(t — to; g2, g3) denotes the Weierstrass p-function
with invariants

162

=0 &= —162Ko. (41)

o Let s(t; Ko) be the particular solution to equation (40) corresponding
to tp = 0.

& =
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e If 1 = 1(s; Ko) is a solution to the linear equation (36), then
o(t; Ko) = ¥(s(t; Ko); Ko) verifies the following Schrodinger-type
equation:

¢ (t; Ko) — 2¢ ( t; 13625, —162K0> o(t; Ko) = 0. (42)
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e If 1 = 1(s; Ko) is a solution to the linear equation (36), then
o(t; Ko) = ¥(s(t; Ko); Ko) verifies the following Schrodinger-type
equation:

¢ (t; Ko) — 2¢ ( t; 13625, —162K0> o(t; Ko) = 0. (42)

@ Therefore, if 11 = 11(s; Ko) and ¥» = 1(s; Kp) are two linearly
independent solutions to equation (36) then ¢1(t; Ko) = ¥1(s(t); Ko)
and ¢o(t; Ko) = ¥a(s(t); Ko) is a fundamental set of solutions to
equation (42).
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@ The implicit general solution (38) can be expressed as follows:

2u161(t; Ko) + ¢4 (t; Ko) K 2(uix — 2u)p1(t; Ko) + x4 (t; Ko)

2urha(6) + M6 K) Y 2urx— 2u)a(ts Ko) + x4 Ko)
(2(u1x — 2u)@a(t; Ko) + xdo(t; Ko))2 K
4uW (o1, ¢2)(t; Ko) ¥
(43)
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@ The implicit general solution (38) can be expressed as follows:

2u1¢1(t; Ko) + ¢1(t; Ko) _ K 2(uix — 2u)p1(t; Ko) + x4 (t; Ko) K
2u1do(t) + dh(t; Ko) L 2,

2(u1x — 2u)a(t; Ko) + x5 (t; Ko)
(2(u1x — 2u)a(t; Ko) + xoa(t; Ko))?
4uW (g1, ¢2)(t; Ko)

= K;.

(43)

@ We can eliminate u; to obtain the following parametrized general
solution to equation (27):

X(t) = K3(Ki — K2) ( $1(t; Ko) — Kaga(t; Ko))
¢1(t; Ko) — Ki2(t; Ko) ’

Ks(Ki — K2)?
25
4<¢1(t; Ko) — Kia(t; Ko))

where K; € R for i =0,1,2,3, K3 > 0, and Kj # K>.
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Theorem

Let ¢1 = ¢1(t; Ko) and ¢2 = ¢a(t; Ko) be two linearly independent
solutions to the one-parameter family of Schrodinger-type equations (42)
such that W(¢1,¢2)(t; Ko) = 1. Then the exact four-parameter solution
to the static Euler-Bernoulli beam equation (24) is given in parametric
form by

_ o 91(t Ko) — Kago(t; Ko)
x(t) = Ka(Ki Kz)(bl(t; Ko) — Kudalt Ko)’

3 (44)

K32 (K1 — K2)

y(t) = =
2<¢>1(t; Ko) — Kia(t; Ko))

where K; € R for i =0,1,2,3, K3 > 0, and K1 # K>.
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The case Ky = i%
@ These values of Ky correspond precisely to the cases in which the
discriminant g3 — 27g2 of the Weierstrass p-function

o(t) = o(t; g2, g3) is equal to zero.
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The case Ky = i%
@ These values of Ky correspond precisely to the cases in which the
discriminant g3 — 27g2 of the Weierstrass p-function
o(t) = p(t; g2, 83) is equal to zero.

@ Implies 6 = 1.

September 5, 2018 36 / 54

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures



The case Ky = i%
@ These values of Ky correspond precisely to the cases in which the
discriminant g3 — 27g2 of the Weierstrass p-function
o(t) = p(t; g2, 83) is equal to zero.
@ Implies 6 = 1.
@ A fundamental set of solutions to the Schrodinger-type equation (42)
can be obtained in terms of elementary functions.
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o If Ky = —% then p(t; g2, 83) = —% + 8 csc? (Zﬁt) and it can be
checked that two linearly independent solutions to the corresponding
equation (42) verifying W (1, ¢2)(t) = 1 become

o1(t) = ?cot (2@5) sin ( a(t)) — gcos( a(t)), (45)
da(t) = csc (2v/2t) (((3+ VB) cos (Bi(1)) + (3~ VB)cos( (1)) ) ,
where
A2t —m _A(V2-V3)t—n _AV2+V3)t—n
a(t) = N pi(t) = % Ba(t) = % (46)
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o If Ky = —% then p(t; g2, 83) = —% + 8 csc? (Qﬁt) and it can be
checked that two linearly independent solutions to the corresponding

equation (42) verifying W (1, ¢2)(t) = 1 become
o1(t) = %c (2[15) S|n(o<(t))—£cos( a(t)), (45)
éa(t) = csc ( 2v2t) ( ( 3+ VB)cos( 51(0) + (3= VB)cos( Ba(1)) ) ,
where
A2t —m 4(v/2 - /3)t - 4(V2 4+ /3)t —
a(t) = N Bu(t) = —ﬁ o Ba(t) = —f - (46)
o If Ky = then o(t g2,83) =3 8 + 8csch? (2\ft) and two linearly

independent solutions to the corresponding equation (42) satisfying
W(¢1,¢2)(t) = 1 become

#1(t) = csch ( 2\@) ( (3 + v/6) cosh ( B1(t)) + (3 — v/6) cosh ( Ba(t)) )

V3

(47)
¢a(t) = 5 coth (2\@) sinh ( a(t)) — % cosh ( a(t)),

where «a(t), 81(t) and Ba(t) are given in (46).

A. Ruiz, C. Muriel (UCA) A-symmetries and solvable structures September 5, 2018 37 / 54



-64 -62 -60 =58 -56 -54 -52

Figure: 6 = 1,Ko = — 32, K1 = —1, K, = 3,K3 = 10, t € (0.89,6.2)
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Figure: 6 = 1,Ko = =32, K1 = =1, K, = 3, K3 = 10, t € (—11.3,-5.5)
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36 38 40 42 44 46

Figure: 6 =1, Ko = 28, Ky = 1, K, = —3,K3 = 10, t € (—15,15)
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-205 -200 -195

Figure: 6 = 1, Ko = 38, K1 = 1, K = 3, K3 = 100, t € (—15,15)
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The case Ko =0

@ It can be checked that a fundamental set of solutions {¢1, ¢2} to
equation (42) such that W(¢1, ¢2)(t) = 1 is given by

(1) = Vi) and aa(0) = Vo) (g5 + 1<)

where p(t) = p(t; g2,0) and ((t) = ((t; g2,0) denote the Weierstrass
p and ( functions with parameter g» = 1—225.
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The case Ko =0

@ It can be checked that a fundamental set of solutions {¢1, ¢2} to
equation (42) such that W(¢1, ¢2)(t) = 1 is given by

(1) = Vi) and aa(0) = Vo) (g5 + 1<)

where p(t) = p(t; g2,0) and ((t) = ((t; g2,0) denote the Weierstrass
p and ( functions with parameter g» = 1—225.

@ The following three-parameter family of solutions to equation (24) is
obtained:

0 = Hotk — ) (10O~ (610-+ 126000(0) ),

16200(t) — K1 ( 6¢/(2) + 126(£)C(2))

(0 - ( SRUEIALIT )3
g 2/0(0) (16200(t) — Ku ( 6¢/(1) + 12((D)p(t)) )
where K; e R for i =1,2,3, K3 > 0, K1 # K>.
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10+

5 10 15 20 25

Figure: 6 = 1,Ko = 0, K1 = 0.3, Ko = —1, K3 = 1
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I 1 1 1
-140 -120 -100 -80 -60 -40 -20

Figure: 6 = 1, Ko = 0, K1 = —0.3, K, = —10, K3 = 0.1
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Figure: 0= ]., KO = 0, K1 = 70.3, K2 = 3, K3 =0.3
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The case Ky # j:% and Ky # 0

e A fundamental set of solutions {¢1, ¢2} to equation (42) such that
W (o1, 02)(t) = 1 is determined by

¢1(t) = @(t)eXP(—tC(V))Z((?i(z)), a(t) = p/%’y)exp(tC(fy))a(t_V)

where p(t) = o(t; g1, 82), ¢(t) = ((t; 81, 82), o(t) = o(t; &1, 82)
stand for the Weierstrass p-function, {-function and o-function,
respectively, with parameters

1 2
g1 = %(5 and g = —16Ko,

and the value « is such that p(y) = 0.

A. Ruiz, C. Muriel (UCA)
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Theorem

The four-parameter general solution to the Euler-Bernoulli beam equation
ya =0y 5=+l

is given in parametric form through

a(1)?a(t)?p(t)e’ (Vexp(—tC(v)) — Keexp(t¢(v))o(t — 7)2)

xt0) = Kok~ 1) ( (2o (D2e(0)6 (Vexp(—te (1)) — Kiexp(tC(1)(t — 7

y) == ( K2 (K = Ka)a)a(t)a(s = 1)9'(2) )37
2(a(y)?a(t)p(t)e’ (v)exp(—t((7)) — Kiexp(td())o(t — 7)?)
where Ki, K2, K3 € R, Ki # Ko, K3 > 0, p(t) = p(t; g1, ),
C(t) = ¢(t; g1,82), o(t) = o(t; g1, &) stand for the Weierstrass
p-function, (-function and o-function, respectively, with parameters
g1 = 1Tf326 and g» = —162Kp, Ko € R\ {i%,O}, and the value ~ is such
that p(v) = 0.
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Figure: 6 =1,Ko = 1,K; = —1,K = —3, K3 = 10, t € (—1.6,1)
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-60 -40 -20 20 4 60 80

-100 \

Figure: 6 =1,Ko =1, K; = —1, K = —3, K3 = 10, t € (1,4)
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25 \-j)/ 35 40 45 \Q/
-2

Figure: 6 =1, Ko = 0.1, Ky = —1, K» = —3, K3 = 10, t € (—100, 100)
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1.0
/“SQE /N
05 M N6/ 38 40 42 44

-1.0

Figure: 6 = 1, Ko = 0.01, Ky = —1, K» = —3, K3 = 10, t € (—100, 100)
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-100

Figure: 6 = 1,Ko = 1.1, Ky = —1,Kp = —3, K3 = 10, t € (1.1,3.6)
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A singular two-parameter family of solutions

@ We study the singular case in which the function C(s; Ko)? is not
defined.
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A singular two-parameter family of solutions

@ We study the singular case in which the function C(s; Ko)? is not
defined.

e That situation occurs if s = sp(Kp), being sp(Kp) one of the roots of

. 16
the polynomial s3 — 3 ds+ 8Ky =0.
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A singular two-parameter family of solutions

@ We study the singular case in which the function C(s; Ko)? is not
defined.

e That situation occurs if s = sp(Kp), being sp(Kp) one of the roots of
: 16
the polynomial s3 — 3 ds+ 8Ky =0.

@ According to the value of s, s = sp(Kp) yields the following
second-order equation

u? — 2up = so(Kp).
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A singular two-parameter family of solutions

@ We study the singular case in which the function C(s; Ko)? is not
defined.

e That situation occurs if s = sp(Kp), being sp(Kp) one of the roots of
: 16
the polynomial s3 — 3 ds+ 8Ky =0.

@ According to the value of s, s = sp(Kp) yields the following
second-order equation

u? — 2up = so(Kp).
@ The solutions u = f(x) are of the form
f(x) = ax® + bx + c, (48)
where the constants a, b and ¢ satisfy the condition

So(Ko) = b2 —4ac.
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o It can be checked that (48) satisfies the equation (27) if and only if

3(b? — 4ac)® — ?5 =0. (49)
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o It can be checked that (48) satisfies the equation (27) if and only if

3(b? — 4ac)® — ?5 =0. (49)

@ Solutions (48) verifying (49) correspond to solutions of (24) of the

form
y(x) = £(ax® + bx + ¢)*/?, (50)

when the constants a, b and c satisfy (49).
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