CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

María del Carmen Pérez Martínez

Department of Mathematics, University of Cádiz, Spain

September, 6th 2018

SWITCHING LAWS OF TYPE II

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS THEOREM (PÉREZ AND BENÍTEZ (2012))

If $E_1 \cap \{x \in \mathcal{U} : \det(f_1(x), f_2(x)) > 0\} \neq \emptyset$, then there exist $x_0 \in E_1 \cap S_1 \sigma$ -convergent where σ is a switching law of type II.

SWITCHING LAWS OF TYPE II

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

CONTROL FOR n = 2 and N = 2

APPLICATION TO CONVERTERS

THEOREM (PÉREZ AND BENÍTEZ (2012))

If $E_1 \cap \{x \in \mathcal{U} : \det(f_1(x), f_2(x)) > 0\} \neq \emptyset$, then there exist $x_0 \in E_1 \cap S_1 \sigma$ -convergent where σ is a switching law of type II.

