Control of switched systems and	A NEW SITUATION
ITS APPLICATIONS TO CONVERTERS C. PÉREZ	
INTRODUCTION TO SWITCHED SYSTEMS	$\dot{x} = f_1(x)$ $\dot{x} = f_2(x)$
METHOD FOR STABILIZATION WHEN $n = 2$ AND $N = 2$	
Control for $n = 2$ and $N = 2$	
Application to converters	

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

A NEW SITUATION

$$\dot{x} = f_1(x) \qquad \qquad \dot{x} = f_2(x)$$

• f_1 and f_2 has not a common equilibrium point.

A NEW SITUATION

Control of switched systems and its applications to converters

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

$$\dot{x} = f_1(x) \qquad \qquad \dot{x} = f_2(x)$$

- f_1 and f_2 has not a common equilibrium point.
- We want the solution to converge to a reference state x_r .

A NEW SITUATION

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

$$\dot{x} = f_1(x) \qquad \qquad \dot{x} = f_2(x)$$

- f_1 and f_2 has not a common equilibrium point.
- We want the solution to converge to a reference state x_r .
- The only control action is the switching law.

A NEW SITUATION

Control of switched systems and its applications to converters

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

$$\dot{x} = f_1(x)$$
 $\dot{x} = f_2(x)$

- f_1 and f_2 has not a common equilibrium point.
- We want the solution to converge to a reference state x_r .
- The only control action is the switching law.

<u>Problem</u>: how can we define a switching law σ such that the solution of the switched system converge to x_r ?

CONTROL FOR n = 2 and N = 2CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS ТО CONVERTERS C. PÉREZ Fixed $x_r \in \mathbb{R}^2$, the objective is, given an initial condition $x_0 \in \mathbb{R}^2$, to define a switching law σ such that METHOD FOR $\lim_{t\to\infty}\phi(t;x_0,\sigma)=x_r$ WHEN n = 2AND N = 2CONTROL FOR n = 2 and *N* = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

CONTROL FOR n = 2 and N = 2

Fixed $x_r \in \mathbb{R}^2$, the objective is, given an initial condition $x_0 \in \mathbb{R}^2$, to define a switching law σ such that

$$\lim_{t\to\infty}\phi(t;x_0,\sigma)=x_r$$

• Again, a geometric point of view.

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

Control for n = 2 and N = 2

Fixed $x_r \in \mathbb{R}^2$, the objective is, given an initial condition $x_0 \in \mathbb{R}^2$, to define a switching law σ such that

$$\lim_{t\to\infty}\phi(t;x_0,\sigma)=x_r$$

- Again, a geometric point of view.
- We redefine the sets E_1 and E_2 .

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

Control for n = 2 and N = 2

Fixed $x_r \in \mathbb{R}^2$, the objective is, given an initial condition $x_0 \in \mathbb{R}^2$, to define a switching law σ such that

$$\lim_{t\to\infty}\phi(t;x_0,\sigma)=x_r$$

- Again, a geometric point of view.
- We redefine the sets E_1 and E_2 .
- We again define the set $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$.

Control of switched systems and	The direction respect to x_r
ITS APPLICATIONS TO CONVERTERS	
C. Pérez	
INTRODUCTION TO SWITCHED SYSTEMS	
Method for stabilization when $n = 2$ and $N = 2$	
Control for $n = 2$ and $N = 2$	
Application to converters	

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

THE DIRECTION RESPECT TO X_r

the trajectory given by f_i is of clockwise direction
 respect to x_r in:

 $\{x \in \mathbb{R}^2 : \det(x - x_r, f_i(x)) < 0\}$

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

THE DIRECTION RESPECT TO X_r

the trajectory given by f_i is of clockwise direction
 respect to x_r in:

$$\{x \in \mathbb{R}^2 : \det(x - x_r, f_i(x)) < 0\}$$

 the trajectory given by f_i is of counterclockwise direction respect to x_r in:

$$\{x \in \mathbb{R}^2 : \det(x - x_r, f_i(x)) > 0\}$$

C. PÉREZ

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHICH PROPERTIES HAVE THESE SETS?

$$G_i(x) = \det(x - x_r, f_i(x))$$

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHICH PROPERTIES HAVE THESE SETS?

For *i* = 1, 2,

$$G_i(x) = \det(x - x_r, f_i(x))$$

•
$$G_i(x_r) = 0.$$

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHICH PROPERTIES HAVE THESE SETS?

For
$$i = 1, 2$$
,

$$G_i(x) = \det(x - x_r, f_i(x))$$

- $G_i(x_r) = 0.$
- $DG_i(x_r) = f_i(x_r) \neq (0,0)$ because x_r is not an equilibrium point of the subsystem f_i .

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHICH PROPERTIES HAVE THESE SETS?

For
$$i = 1, 2$$
,

$$G_i(x) = \det(x - x_r, f_i(x))$$

- $G_i(x_r) = 0.$
- $DG_i(x_r) = f_i(x_r) \neq (0,0)$ because x_r is not an equilibrium point of the subsystem f_i .

C. PÉREZ

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHICH PROPERTIES HAVE THESE SETS?

For
$$i = 1, 2$$
,

$$G_i(x) = \det(x - x_r, f_i(x))$$

- $G_i(x_r) = 0.$
- $DG_i(x_r) = f_i(x_r) \neq (0,0)$ because x_r is not an equilibrium point of the subsystem f_i .

There exists a neighborhood of x_r such that

Who are E_1 and E_2 ?

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

In a neighborhood of x_r ,

Who are E_1 and E_2 ?

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2 and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

In a neighborhood of x_r ,

Who are E_1 and E_2 ?

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

In a neighborhood of x_r ,

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHY DO WE NEED TO KNOW THE SET $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$

DEFINITION

The set given by $\{x \in \mathbb{R}^2 : x = x_r + \mu z_1 + (1 - \mu)z_2, z_1 \in I_1, z_2 \in I_2, 0 < \mu < 1\}$ will be called the cone delimited by I_1 and I_2 and denoted by $C(x_r, I_1, I_2)$.

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHY DO WE NEED TO KNOW THE SET $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$

DEFINITION

The set given by

 $\{x \in \mathbb{R}^2 : x = x_r + \mu z_1 + (1 - \mu)z_2, z_1 \in I_1, z_2 \in I_2, 0 < \mu < 1\}$ will be called the cone delimited by I_1 and I_2 and denoted by $C(x_r, I_1, I_2)$.

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

WHY DO WE NEED TO KNOW THE SET $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$

DEFINITION

The set given by $\{x \in \mathbb{R}^2 : x = x_r + \mu z_1 + (1 - \mu)z_2, z_1 \in I_1, z_2 \in I_2, 0 < \mu < 1\}$ will be called the cone delimited by I_1 and I_2 and denoted by $C(x_r, I_1, I_2)$.

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

LEMMA

We suppose that:

- $C(x_r, l_1, l_2) \cap U \setminus \{x_r\} \subset \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) > 0\} \cap E_1$,
- the trajectory T₁ of f₁ goes from x₀ ∈ l₂ to x₁ ∈ l₁ (in counterclockwise direction respect to x_r), and
- the trajectory T₂ of f₂ goes from X₁ ∈ l₁ to X₂ ∈ l₂ (in clockwise direction respect to x_r),

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

LEMMA

We suppose that:

- $C(x_r, l_1, l_2) \cap U \setminus \{x_r\} \subset \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) > 0\} \cap E_1$,
- the trajectory T₁ of f₁ goes from x₀ ∈ l₂ to x₁ ∈ l₁ (in counterclockwise direction respect to x_r), and
- the trajectory T₂ of f₂ goes from X₁ ∈ l₁ to X₂ ∈ l₂ (in clockwise direction respect to x_r),

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

LEMMA

We suppose that:

- $C(x_r, l_1, l_2) \cap U \setminus \{x_r\} \subset \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) > 0\} \cap E_1$,
- the trajectory T₁ of f₁ goes from x₀ ∈ l₂ to x₁ ∈ l₁ (in counterclockwise direction respect to x_r), and
- the trajectory T₂ of f₂ goes from X₁ ∈ l₁ to X₂ ∈ l₂ (in clockwise direction respect to x_r),

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

LEMMA

We suppose that:

- $C(x_r, l_1, l_2) \cap U \setminus \{x_r\} \subset \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) > 0\} \cap E_1$,
- the trajectory T₁ of f₁ goes from x₀ ∈ l₂ to x₁ ∈ l₁ (in counterclockwise direction respect to x_r), and
- the trajectory T₂ of f₂ goes from X₁ ∈ l₁ to X₂ ∈ l₂ (in clockwise direction respect to x_r),

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

LEMMA

We suppose that:

- $C(x_r, l_1, l_2) \cap U \setminus \{x_r\} \subset \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) > 0\} \cap E_1$,
- the trajectory T₁ of f₁ goes from x₀ ∈ l₂ to x₁ ∈ l₁ (in counterclockwise direction respect to x_r), and
- the trajectory T₂ of f₂ goes from X₁ ∈ l₁ to X₂ ∈ l₂ (in clockwise direction respect to x_r),

THEOREM

C. Pérez

TO CONVERTERS

CONTROL OF

SWITCHED SYSTEMS AND ITS APPLICATIONS

TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS If $E_1 \cap \{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x) > 0\} \neq \emptyset$, then there exists a cone $C(x_r; l_1, l_2)$ such that for each initial condition $x_0 \in C(x_r; l_1, l_2)$ there exists a switching law σ such that the solution of the switched system starting from x_0 converge to x_r .

- i_L is the inductor current.
- v_c is the capacitor voltage.
- x = (i, v) is the state variable.

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- i_L is the inductor current.
- v_c is the capacitor voltage.

•
$$x = (i, v)$$
 is the state variable.

When S_1 is ON,

$$\dot{x} = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x + \begin{pmatrix} 1/L \\ 0 \end{pmatrix} u$$

When S_1 is OFF,

$$\dot{x} = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix} u$$

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

•
$$f_1(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x + \begin{pmatrix} 1/L \\ 0 \end{pmatrix} u$$

• $f_2(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x$

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

•
$$f_1(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x + \begin{pmatrix} 1/L \\ 0 \end{pmatrix} u$$

• $f_2(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x$

• $\dot{x} = f_{\sigma}(x(t))$ where $\sigma : [0, \infty) \longrightarrow \{1, 2\}$ is the switching law, $u \in \mathbb{R}$

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

CONTROL FOR n = 2 AND N = 2

- $f_1(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x + \begin{pmatrix} 1/L \\ 0 \end{pmatrix} u$ • $f_2(x) = \begin{pmatrix} -R/L & -1/L \\ 1/C_0 & -1/(R_0C_0) \end{pmatrix} x$
- $\dot{x} = f_{\sigma}(x(t))$ where $\sigma : [0, \infty) \longrightarrow \{1, 2\}$ is the switching law, $u \in \mathbb{R}$
- The objective is obtain a switching strategy σ under which the output voltage converges to the desired reference.

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- The sets E_1 and E_2 .
- The set of $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$ is given by

- The sets E_1 and E_2 .
- The set of $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$ is a ray.
- Thus,

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- The sets E_1 and E_2 .
- The set of $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$ is a ray.
- Thus,

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- The sets E_1 and E_2 .
- The set of $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$ is a ray.
- Thus,

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- The sets E_1 and E_2 .
- The set of $\{x \in \mathbb{R}^2 : \det(f_1(x), f_2(x)) = 0\}$ is a ray.
- Thus,

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS C. PÉREZ

INTRODUCTION TO SWITCHED

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS • $L = 500 \mu H$, $C_0 = 470 \mu F$, u = 100 V, $R = 2\Omega$, and $R_0 = 50\Omega$ (values in Noori et al (2016)).

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- $L = 500 \mu H$, $C_0 = 470 \mu F$, u = 100 V, $R = 2\Omega$, and $R_0 = 50\Omega$ (values in Noori et al (2016)).
- $x_r = (1, 50)$ is the reference state.

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- $L = 500 \mu H$, $C_0 = 470 \mu F$, u = 100 V, $R = 2\Omega$, and $R_0 = 50\Omega$ (values in Noori et al (2016)).
- $x_r = (1, 50)$ is the reference state.

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

- $L = 500 \mu H$, $C_0 = 470 \mu F$, u = 100 V, $R = 2\Omega$, and $R_0 = 50\Omega$ (values in Noori et al (2016)).
- $x_r = (1, 50)$ is the reference state.

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS • For the initial condition $x_0 = (0, 0)$.

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

CONTROL OF SWITCHED SYSTEMS AND ITS APPLICATIONS TO CONVERTERS

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

Method for stabilization when n = 2and N = 2

Control for n = 2 and N = 2

C. Pérez

INTRODUCTION TO SWITCHED SYSTEMS

METHOD FOR STABILIZATION WHEN n = 2AND N = 2

Control for n = 2 and N = 2

APPLICATION TO CONVERTERS

Thank you for your attention!